A methodological approach to correlate tumor heterogeneity with drug distribution profile in mass spectrometry imaging data

被引:3
|
作者
Prasad, Mridula [1 ,2 ]
Postma, Geert [1 ]
Franceschi, Pietro [2 ]
Morosi, Lavinia [3 ]
Giordano, Silvia [4 ]
Falcetta, Francesca [3 ]
Giavazzi, Raffaella [3 ]
Davoli, Enrico [4 ]
Buydens, Lutgarde M. C. [1 ]
Jansen, Jeroen [1 ]
机构
[1] Radboud Univ Nijmegen, IMM Analyt Chem, Heyendaalseweg, NL-6525 AJ Nijmegen, Netherlands
[2] Fdn Edmund Mach, Unit Computat Biol, Res & Innovat Ctr, I-38010 San Michele All Adige, Italy
[3] Ist Ric Farmacol Mario Negri IRCCS, Dept Oncol, Via La Masa 19, I-20156 Milan, Italy
[4] Ist Ric Farmacol Mario Negri IRCCS, Mass Spectrometry Lab, Via La Masa 19, I-20156 Milan, Italy
来源
GIGASCIENCE | 2020年 / 9卷 / 11期
关键词
Mass spectrometry imaging; drug distribution; tumor heterogeneity; spatial methods; SEGMENTATION; PACLITAXEL; TOOL;
D O I
10.1093/gigascience/giaa131
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Drug mass spectrometry imaging (MSI) data contain knowledge about drug and several other molecular ions present in a biological sample. However, a proper approach to fully explore the potential of such type of data is still missing. Therefore, a computational pipeline that combines different spatial and non-spatial methods is proposed to link the observed drug distribution profile with tumor heterogeneity in solid tumor. Our data analysis steps include pre-processing of MSI data, cluster analysis, drug local indicators of spatial association (LISA) map, and ions selection. Results: The number of clusters identified from different tumor tissues. The spatial homogeneity of the individual cluster was measured using a modified version of our drug homogeneity method. The clustered image and drug LISA map were simultaneously analyzed to link identified clusters with observed drug distribution profile. Finally, ions selection was performed using the spatially aware method. Conclusions: In this paper, we have shown an approach to correlate the drug distribution with spatial heterogeneity in untargeted MSI data. Our approach is freely available in an R package 'CorrDrugTumorMSI'.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [1] Mass spectrometry imaging for drug distribution studies
    Prideaux, Brendan
    Stoeckli, Markus
    JOURNAL OF PROTEOMICS, 2012, 75 (16) : 4999 - 5013
  • [2] Quantitative determination of niraparib and olaparib tumor distribution by mass spectrometry imaging
    Morosi, Lavinia
    Matteo, Cristina
    Ceruti, Tommaso
    Giordano, Silvia
    Ponzo, Marianna
    Frapolli, Roberta
    Zucchetti, Massimo
    Davoli, Enrico
    D'Incalci, Maurizio
    Ubezio, Paolo
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2020, 16 (08): : 1363 - 1375
  • [3] Mass Spectrometry Imaging: Applications in Drug Distribution Studies
    Zhao, Yuan-Sheng
    Li, Chuan
    CURRENT DRUG METABOLISM, 2015, 16 (09) : 807 - 815
  • [4] A Nanostructured Matrices Assessment to Study Drug Distribution in Solid Tumor Tissues by Mass Spectrometry Imaging
    Giordano, Silvia
    Pifferi, Valentina
    Morosi, Lavinia
    Morelli, Melinda
    Falciola, Luigi
    Cappelletti, Giuseppe
    Visentin, Sonja
    Licandro, Simonetta A.
    Frapolli, Roberta
    Zucchetti, Massimo
    Pastorelli, Roberta
    Brunelli, Laura
    D'Incalci, Maurizio
    Davoli, Enrico
    NANOMATERIALS, 2017, 7 (03):
  • [5] Heterogeneity of paclitaxel distribution in different tumor models assessed by MALDI mass spectrometry imaging
    Giordano, Silvia
    Zucchetti, Massimo
    Decio, Alessandra
    Cesca, Marta
    Nerini, Ilaria Fuso
    Maiezza, Marika
    Ferrari, Mariella
    Licandro, Simonetta Andrea
    Frapolli, Roberta
    Giavazzi, Raffaella
    Maurizio, D'Incalci
    Davoli, Enrico
    Morosi, Lavinia
    SCIENTIFIC REPORTS, 2016, 6
  • [6] A graphical data processing pipeline for mass spectrometry imaging-based spatially resolved metabolomics on tumor heterogeneity
    Huang, Luojiao
    Mao, Xinxin
    Sun, Chenglong
    Luo, Zhigang
    Song, Xiaowei
    Li, Xin
    Zhang, Ruiping
    Lv, Yiwei
    Chen, Jie
    He, Jiuming
    Abliz, Zeper
    ANALYTICA CHIMICA ACTA, 2019, 1077 : 183 - 190
  • [7] Mass Spectrometry Imaging Reveals Abnormalities in Cardiolipin Composition and Distribution in Astrocytoma Tumor Tissues
    Krieger, Anna C. C.
    Macias, Luis A. A.
    Goodman, J. Clay
    Brodbelt, Jennifer S. S.
    Eberlin, Livia S. S.
    CANCERS, 2023, 15 (10)
  • [8] Mass spectrometry imaging in drug distribution and drug metabolism studies - Principles, applications and perspectives
    Granborg, Jonatan Riber
    Handler, Anne Mette
    Janfelt, Christian
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2022, 146
  • [9] Unraveling Spatial Heterogeneity in Mass Spectrometry Imaging Data with GraphMSI
    Guo, Lei
    Xie, Peisi
    Shen, Xionghui
    Lam, Thomas Ka Yam
    Deng, Lingli
    Xie, Chengyi
    Xu, Xiangnan
    Wong, Chris Kong Chu
    Xu, Jingjing
    Fang, Jiacheng
    Wang, Xiaoxiao
    Xiong, Zhuang
    Luo, Shangyi
    Wang, Jianing
    Dong, Jiyang
    Cai, Zongwei
    ADVANCED SCIENCE, 2025, 12 (08)
  • [10] Intra-Tumor Heterogeneity Revealed by Mass Spectrometry Imaging Is Associated with the Prognosis of Breast Cancer
    Gawin, Marta
    Kurczyk, Agata
    Niemiec, Joanna
    Stanek-Widera, Agata
    Grela-Wojewoda, Aleksandra
    Adamczyk, Agnieszka
    Biskup-Fruzynska, Magdalena
    Polanska, Joanna
    Widlak, Piotr
    CANCERS, 2021, 13 (17)