Classification of Hyperspectral Data Using a Multi-Channel Convolutional Neural Network

被引:24
作者
Chen, Chen [1 ]
Zhang, Jing-Jing [1 ]
Zheng, Chun-Hou [2 ]
Yan, Qing [1 ]
Xun, Li-Na [1 ]
机构
[1] Anhui Univ, Coll Elect Engn & Automat, Hefei 230601, Anhui, Peoples R China
[2] Anhui Univ, Coll Comp Sci & Technol, Hefei 230601, Anhui, Peoples R China
来源
INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III | 2018年 / 10956卷
基金
美国国家科学基金会;
关键词
Deep learning; Hyperspectral image classification; Convolutional neural network; Full connection layer; Logistic regression;
D O I
10.1007/978-3-319-95957-3_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, deep learning is widely used for hyperspectral image (HSI) classification, among them, convolutional neural network (CNN) is most popular. In this paper, we propose a method for hyperspectral data classification by multi-channel convolutional neural network (MC-CNN). In this framework, one dimensional CNN (1D-CNN) is mainly used to extract the spectral feature of hyperspectral images, two dimension CNN (2D-CNN) is mainly used to extract the spatial feature of hyperspectral images, three-dimensional CNN (3D-CNN) is mainly used to extract part of the spatial and spectral information. And then these features are merged and pull into the full connection layer. At last, using neural network classifiers like logistic regression, we can eventually get class labels for each pixel. For comparison and validation, we compare the proposed MC-CNN algorithm with the other three deep learning algorithms. Experimental results show that our MC-CNN-based algorithm outperforms these state-of-the-art algorithms. Showcasing the MC-CNN framework has huge potential for accurate hyperspectral data classification.
引用
收藏
页码:81 / 92
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 2013, COMMUNICATIONS ACM
[2]  
Bengio Y., 2006, ADV NEURAL INFORM PR, V19
[3]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[4]   Kernel-based methods for hyperspectral image classification [J].
Camps-Valls, G ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (06) :1351-1362
[5]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[6]  
Geng Y, 2016, LEARNING CONVOLUTION
[7]   A Novel Image Tag Completion Method Based on Convolutional Neural Transformation [J].
Geng, Yanyan ;
Zhang, Guohui ;
Li, Weizhi ;
Gu, Yi ;
Liang, Ru-Ze ;
Liang, Gaoyuan ;
Wang, Jingbin ;
Wu, Yanbin ;
Patil, Nitin ;
Wang, Jing-Yan .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 :539-546
[8]   Customizing kernel functions for SVM-based hyperspectral image classification [J].
Guo, Baofeng ;
Gunn, Steve R. ;
Damper, R. I. ;
Nelson, James D. B. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (04) :622-629
[9]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[10]   3D Convolutional Neural Networks for Human Action Recognition [J].
Ji, Shuiwang ;
Xu, Wei ;
Yang, Ming ;
Yu, Kai .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) :221-231