On the role of TiO2 nanoparticles on thermal behavior of flexible polyurethane foam sandwich panels

被引:13
作者
Keshavarz, M. [1 ]
Zebarjad, S. Mojtaba [1 ]
Daneshmanesh, H. [1 ]
Moghim, M. H. [1 ]
机构
[1] Shiraz Univ, Fac Engn, Dept Mat Sci & Engn, Shiraz 7134814666, Iran
关键词
Sandwich panel; Flexible polyurethane; Foam; TiO2; nanoparticles; Thermal behavior; Tan delta; MECHANICAL-PROPERTIES; INTERPOLYMER COMPLEXATION; FLAME-RETARDANT; COMBUSTION;
D O I
10.1007/s10973-016-5700-7
中图分类号
O414.1 [热力学];
学科分类号
摘要
A series of flexible polyurethane foam (FPUF) and monolithic polyurethane (PU) sandwich panels reinforced with different contents of TiO2 nanoparticles (0, 0.5 and 1 mass%) have been successfully prepared by compression molding process at room temperature. The influence of TiO2 nanoparticles on the thermal properties of PU matrix has been investigated by thermogravimetric and dynamic mechanical thermal analysis (DMTA). The morphology of porous structure of FPUF sandwich panels has been characterized by scanning electron microscopy. The presence of TiO2 nanoparticles as reinforcement has improved the thermal properties of the FPUF and PU sandwich panel samples. It has been observed that FPUF and PU sandwich panel reinforced with 1 mass% of TiO2 nanoparticles possessed the highest enhancement in thermal properties in all accomplished thermal tests. The DMTA results for the FPUF and PU sandwich panel reinforced with 1 mass% of TiO2 nanoparticles indicated that the storage modulus and loss modulus have increased about 1.22 and 1.25 times, 1.5 and 1.55 times, respectively, compared to pure samples. Furthermore, the glass transition (T (g)) obtained from the damping factor (tan delta) curves has increased 2 and 1 degrees C for FPUF and PU sandwich panels, respectively.
引用
收藏
页码:2037 / 2048
页数:12
相关论文
共 48 条
[1]   Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J].
Alexandre, Michael ;
Dubois, Philippe .
Materials Science and Engineering: R: Reports, 2000, 28 (1-2) :1-63
[2]   Thermal analysis of the structure of segmented polyurethane elastomers [J].
Bagdi, Kristof ;
Molnar, Kinga ;
Pukanszky, Bela, Jr. ;
Pukanszky, Bela .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2009, 98 (03) :825-832
[3]  
Beltrán AA, 2011, LAT AM APPL RES, V41, P75
[4]   Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites [J].
Berta, M ;
Lindsay, C ;
Pans, G ;
Camino, G .
POLYMER DEGRADATION AND STABILITY, 2006, 91 (05) :1179-1191
[5]   Preparation of Poly(acrylic acid)/silver nanocomposite by simultaneous polymerization-reduction approach for antimicrobial application [J].
Chalal, Samia ;
Haddadine, Nabila ;
Bouslah, Naima ;
Benaboura, Ahmed .
JOURNAL OF POLYMER RESEARCH, 2012, 19 (12)
[6]   Polypropylene/calcium carbonate nanocomposites [J].
Chan, CM ;
Wu, JS ;
Li, JX ;
Cheung, YK .
POLYMER, 2002, 43 (10) :2981-2992
[7]   Thermal stability and flame retardancy of polyurethanes [J].
Chattopadhyay, D. K. ;
Webster, Dean C. .
PROGRESS IN POLYMER SCIENCE, 2009, 34 (10) :1068-1133
[8]   Synthesis and characterization of polyurethane/titanium dioxide nanocomposites obtained by in situ polymerization [J].
da Silva, Vinicius Demetrio ;
dos Santos, Leonardo M. ;
Subda, Suelen M. ;
Ligabue, Rosane ;
Seferin, Marcus ;
Carone, Carlos L. P. ;
Einloft, Sandra .
POLYMER BULLETIN, 2013, 70 (06) :1819-1833
[9]   A novel phosphorus-containing copolyester/montmorillonite nanocomposites with improved flame retardancy [J].
Ge, Xin-Guo ;
Wang, De-Yi ;
Wang, Chuan ;
Qu, Ming-Hai ;
Wang, Jun-Sheng ;
Zhao, Cheng-Shou ;
Jing, Xin-Ke ;
Wang, Yu-Zhong .
EUROPEAN POLYMER JOURNAL, 2007, 43 (07) :2882-2890
[10]   Molecular mechanisms of failure in polymer nanocomposites [J].
Gersappe, D .
PHYSICAL REVIEW LETTERS, 2002, 89 (05)