Finite Element Thermal Analysis of Localized Heating in AlGaN/GaN HEMT Based Sensors

被引:0
作者
Hou, Minmin [1 ]
Pan, Chi-Chun [2 ]
Asheghi, Mehdi [2 ]
Senesky, Debbie G. [3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
来源
2014 IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM) | 2014年
关键词
localized heating; finite element analysis; AlGaN; GaN; high electron mobility transistor; sensor; TEMPERATURE; HETEROSTRUCTURES; POLARIZATION; TRANSISTORS; STABILITY; SAPPHIRE; DEVICES; GAS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports the steady-state and transient temperature response of AlGaN/GaN high electron mobility transistor (HEMT) based structures. In this study, three localized heating schemes, namely, continuous self-heating, pulsed self-heating and heating with on-chip heaters are studied for sensor applications that require controlled heating profiles. Two scenarios were considered for the GaN sensor structure: 1) the silicon substrate under the AlGaN/GaN sensor is not removed, and 2) the silicon substrate is removed to form a suspended AlGaN/GaN diaphragm on which the sensor is located. The three heating schemes are analyzed by finite element thermal analysis, evaluated and compared. In addition, general guidelines for designing localized heating architectures for AlGaN/GaN HEMT based sensors are provided.
引用
收藏
页码:25 / 30
页数:6
相关论文
共 19 条
[1]   Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures [J].
Ambacher, O ;
Foutz, B ;
Smart, J ;
Shealy, JR ;
Weimann, NG ;
Chu, K ;
Murphy, M ;
Sierakowski, AJ ;
Schaff, WJ ;
Eastman, LF ;
Dimitrov, R ;
Mitchell, A ;
Stutzmann, M .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (01) :334-344
[2]   SThM temperature mapping and nonlinear thermal resistance evolution with bias on AlGaN/GaN HEMT devices [J].
Aubry, Raphael ;
Jacquet, Jean-Claude ;
Weaver, J. ;
Durand, Olivier ;
Dobson, P. ;
Mills, G. ;
di Forte-Poisson, Marie-Antoinette ;
Cassette, Simone ;
Delage, Sylvain-Laurent .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (03) :385-390
[3]  
Chang C. Y., 2008, APPL PHYS LETT, V92
[4]  
Chapin CA, 2013, STRUCTURAL HEALTH MONITORING 2013, VOLS 1 AND 2, P1621
[5]  
Chu Byung Hwan, 2010, J Diabetes Sci Technol, V4, P171
[6]   Evaluation of the temperature stability of AlGaN/GaN heterostructure FET's [J].
Daumiller, I ;
Kirchner, C ;
Kamp, M ;
Ebeling, KJ ;
Kohn, E .
IEEE ELECTRON DEVICE LETTERS, 1999, 20 (09) :448-450
[7]   Enhanced thermal stability of the two-dimensional electron gas in GaN/AlGaN/GaN heterostructures by Si3N4 surface-passivation-induced strain solidification [J].
Feng, ZH ;
Zhou, YG ;
Cai, SJ ;
Lau, KM .
APPLIED PHYSICS LETTERS, 2004, 85 (22) :5248-5250
[8]   Monte Carlo study of self-heating effect in GaN/AlGaN HEMTs on sapphire, SiC and Si substrates [J].
Fujishiro, HI ;
Mikami, N ;
Hatakenaka, M .
Physica Status Solidi C - Conferences and Critical Reviews, Vol 2, No 7, 2005, 2 (07) :2696-2699
[9]   Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors [J].
Ibbetson, JP ;
Fini, PT ;
Ness, KD ;
DenBaars, SP ;
Speck, JS ;
Mishra, UK .
APPLIED PHYSICS LETTERS, 2000, 77 (02) :250-252
[10]   Thermal conductivity of GaN crystals in 4.2-300 K range [J].
Jezowski, A ;
Danilchenko, BA ;
Bockowski, M ;
Grzegory, I ;
Krukowski, S ;
Suski, T ;
Paszkiewicz, T .
SOLID STATE COMMUNICATIONS, 2003, 128 (2-3) :69-73