Orbital minimization method with l1 regularization

被引:7
|
作者
Lu, Jianfeng [1 ,2 ]
Thicke, Kyle [3 ]
机构
[1] Duke Univ, Dept Math, Dept Phys, Box 90320, Durham, NC 27708 USA
[2] Duke Univ, Dept Chem, Box 90320, Durham, NC 27708 USA
[3] Duke Univ, Dept Math, Box 90320, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Sparse representation; Low-lying eigenspace; Orbital minimization method; Electronic structure; ELECTRONIC-STRUCTURE CALCULATIONS; ALGORITHM;
D O I
10.1016/j.jcp.2017.02.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider a modification of the orbital minimization method (OMM) energy functional which contains an l(1) penalty term in order to find a sparse representation of the low-lying eigenspace of self-adjoint operators. We analyze the local minima of the modified functional as well as the convergence of the modified functional to the original functional. Algorithms combining soft thresholding with gradient descent are proposed for minimizing this new functional. Numerical tests validate our approach. In addition, we also prove the unanticipated and remarkable property that every local minimum of the OMM functional without the l(1) term is also a global minimum. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 50 条
  • [21] Super-resolution reconstruction based on L1/2 regularization
    Xu Z.
    Li W.
    Zhu H.
    Zhu X.
    1600, Huazhong University of Science and Technology (45): : 38 - 42
  • [22] On empirical eigenfunction-based ranking with l1 norm regularization
    Xu, Min
    Fang, Qin
    Wang, Shaofan
    Li, Junbin
    JOURNAL OF APPROXIMATION THEORY, 2015, 192 : 273 - 290
  • [23] Source reconstruction for bioluminescence tomography via L1/2 regularization
    Yu, Jingjing
    Li, Qiyue
    Wang, Haiyu
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2018, 11 (02)
  • [24] A Noise-Robust Method with Smoothed l1/l2 Regularization for Sparse Moving-Source Mapping
    Pham, Mai Quyen
    Oudompheng, Benoit
    Mars, Jerome I.
    Nicolas, Barbara
    SIGNAL PROCESSING, 2017, 135 : 96 - 106
  • [25] Improved L0 Gradient Minimization with L1 Fidelity for Image Smoothing
    Pang, Xueshun
    Zhang, Suqi
    Gu, Junhua
    Li, Lingling
    Liu, Boying
    Wang, Huaibin
    PLOS ONE, 2015, 10 (09):
  • [26] IMPULSE NOISE REMOVAL BY L1 WEIGHTED NUCLEAR NORM MINIMIZATION
    Lu, Jian
    Ye, Yuting
    Dong, Yiqiu
    Liu, Xiaoxia
    Zou, Yuru
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (06): : 1171 - 1191
  • [27] Real-Valued Reweighted l1 Norm Minimization Method Based on Data Reconstruction in MIMO Radar
    Liu, Qi
    Wang, Wei
    Liang, Dong
    Wang, Xianpeng
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2015, E98B (11) : 2307 - 2313
  • [28] RTE-based parameter reconstruction with TV plus L1 regularization
    Tong, Shanshan
    Han, Bo
    Chen, Yong
    Tang, Jinping
    Bi, Bo
    Gu, Ruixue
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 337 : 256 - 273
  • [29] Sparse minimal learning machines via l1/2 norm regularization
    Dias, Madson L. D.
    Freire, Ananda L.
    Souza Junior, Amauri H.
    da Rocha Neto, Ajalmar R.
    Gomes, Joao P. P.
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 206 - 211
  • [30] MINIMIZATION OF L1 OVER L2 FOR SPARSE SIGNAL RECOVERY WITH CONVERGENCE GUARANTEE
    Tao, M. I. N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02): : A770 - A797