共 239 条
Carbon-based quantum particles: an electroanalytical and biomedical perspective
被引:224
作者:
Nekoueian, Khadijeh
[1
,2
]
Amiri, Mandana o
[1
]
Sillanpaa, Mika
[2
]
Marken, Frank
[3
]
Boukherroub, Rabah
[4
]
Szunerits, Sabine
[4
]
机构:
[1] Univ Mohaghegh Ardabili, Dept Chem, Ardebil, Iran
[2] Lappeenranta Univ Technol, Sch Engn Sci, Dept Green Chem, Sammonkatu 12, FI-50130 Mikkeli, Finland
[3] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[4] Univ Valenciennes, Univ Lille, Cent Lille, ISEN,UMR 8520,IEMN, F-59000 Lille, France
关键词:
LARGE-SCALE SYNTHESIS;
SIMULTANEOUS ELECTROCHEMICAL DETERMINATION;
FLUORESCENT SENSING PLATFORM;
ONE-STEP PREPARATION;
SELECTIVE DETECTION;
GRAPHENE OXIDE;
SENSITIVE DETECTION;
HYDROTHERMAL TREATMENT;
GREEN SYNTHESIS;
VOLTAMMETRIC DETERMINATION;
D O I:
10.1039/c8cs00445e
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Carbon-based quantum particles, especially spherical carbon quantum dots (CQDs) and nanosheets like graphene quantum dots (GQDs), are an emerging class of quantum dots with unique properties owing to their quantum confinement effect. Many reviews appeared recently in the literature highlighting their optical properties, structures, and applications. These papers cover a broad spectrum of carbon-based nanoparticles, excluding a more detailed discussion about some important aspects related to the definition of carbon-based particles and the correlation of optical and electrochemical aspects in relation to sensing and biomedical applications. A large part of this review is devoted to these aspects. It aims, in particular, to act as a bridge between optical and electrochemical aspects of carbon-based quantum particles, both of which are associated with the electronic nature of carbon-based quantum particles. A special focus will be on their use in electroanalysis, notably their benefits in redox, and in electrochemical analysis with emphasis on their application as sensors. Electroanalysis is an easy and cost-effective means of providing qualitative and quantitative information of a specific analyte in solution in a time scale of some minutes. The integration of carbon-based quantum particles into these detection schemes as well as their incorporation into composite nanomaterials have largely improved detection limits with possibilities for their integration in aspects ranging from point-of-care devices to personalized medicine. This review will focus on some of these aspects while also covering the nanomedical aspects of carbon-based quantum particles, ultimately correlated for such developments.
引用
收藏
页码:4281 / 4316
页数:36
相关论文