PROPERNESS OF ASSOCIATED MINIMAL SURFACES

被引:7
作者
Alarcon, Antonio [1 ]
Lopez, Francisco J. [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
Null holomorphic curves; associated minimal surfaces; CURVES; R-3;
D O I
10.1090/S0002-9947-2014-06050-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any open Riemann surface N and finite subset 3 subset of S-1 = {z is an element of C vertical bar vertical bar z vertical bar = 1}, there exist an infinite closed set 3(N) subset of S-1 containing 3 and a null holomorphic curve F = (F-j)(j) = 1,2,3 : N -> C-3 such that the map 2) : 3(N) x N -> R-2, 2) (v, P) = Re ((F-1, F-2)(P)), is proper. In particular, Re (vF) : N -> R-3 is a proper conformal minimal immersion properly projecting into R-2 equivalent to R-2 x {0} subset of R-3, for all v is an element of 3(N).
引用
收藏
页码:5139 / 5154
页数:16
相关论文
共 9 条
[1]  
Alarcón A, 2013, MATH ANN, V355, P429, DOI 10.1007/s00208-012-0790-4
[2]   Complete minimal surfaces and harmonic functions [J].
Alarcon, Antonio ;
Fernandez, Isabel ;
Lopez, Francisco J. .
COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (04) :891-904
[3]  
Alarcón A, 2012, J DIFFER GEOM, V90, P351
[4]   IMMERSION OF OPEN RIEMANN SURFACES [J].
GUNNING, RC ;
NARASIMHAN .
MATHEMATISCHE ANNALEN, 1967, 174 (02) :103-&
[5]  
Lopez F. J., T AM MATH S IN PRESS
[6]  
Morales S, 2003, GEOM FUNCT ANAL, V13, P1281, DOI 10.1007/s00039-003-0446-3
[7]  
Osserman Robert, 1986, SURVEY MINIMAL SURFA
[8]   Algebraic curves and non rigid minimal surfaces in the Euclidean space [J].
Pirola, GP .
PACIFIC JOURNAL OF MATHEMATICS, 1998, 183 (02) :333-357
[9]  
Schoen R., 1997, C P LECT NOTES GEOME, VII