REACTION-DIFFUSION EQUATIONS WITH FRACTIONAL DIFFUSION ON NON-SMOOTH DOMAINS WITH VARIOUS BOUNDARY CONDITIONS

被引:46
|
作者
Gal, Ciprian G. [1 ]
Warma, Mahamadi [2 ]
机构
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
[2] Univ Puerto Rico, Dept Math, San Juan, PR 00936 USA
关键词
The fractional Laplace operator; fractional Neumann and Robin boundary conditions on open sets; global attractor; convergence to steady states; semi-linear reaction-diffusion equation; asymptotic behavior; NONLOCAL VECTOR CALCULUS; REGULARITY; THEOREMS;
D O I
10.3934/dcds.2016.36.1279
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the long term behavior in terms of finite dimensional global attractors and (global) asymptotic stabilization to steady states, as time goes to infinity, of solutions to a non-local semilinear reaction-diffusion equation associated with the fractional Laplace operator on non-smooth domains subject to Dirichlet, fractional Neumann and Robin boundary conditions.
引用
收藏
页码:1279 / 1319
页数:41
相关论文
共 50 条