Latent Heat Thermal Energy Storage: Effect of Metallic Mesh Size on Storage Time and Capacity

被引:4
|
作者
Shuja, S. Z. [1 ]
Yilbas, B. S. [1 ]
机构
[1] KKFUPM, Dept Mech Engn, Dhahran 31261, Saudi Arabia
关键词
Latent heat; Thermal storage; Phase change material; Aluminum mesh; PHASE-CHANGE MATERIAL; N-OCTADECANE; SYSTEM;
D O I
10.1007/s10765-015-1953-9
中图分类号
O414.1 [热力学];
学科分类号
摘要
Use of metallic meshes in latent heat thermal storage system shortens the charging time (total melting of the phase change material), which is favorable in practical applications. In the present study, effect of metallic mesh size on the thermal characteristics of latent heat thermal storage system is investigated. Charging time is predicted for various mesh sizes, and the influence of the amount of mesh material on the charging capacity is examined. An experiment is carried out to validate the numerical predictions. It is found that predictions of the thermal characteristics of phase change material with presence of metallic meshes agree well with the experimental data. High conductivity of the metal meshes enables to transfer heat from the edges of the thermal system towards the phase change material while forming a conduction tree in the system. Increasing number of meshes in the thermal system reduces the charging time significantly due to increased rate of conduction heat transfer in the thermal storage system; however, increasing number of meshes lowers the latent heat storage capacity of the system.
引用
收藏
页码:2985 / 3000
页数:16
相关论文
共 50 条
  • [1] Latent Heat Thermal Energy Storage: Effect of Metallic Mesh Size on Storage Time and Capacity
    S. Z. Shuja
    B. S. Yilbas
    International Journal of Thermophysics, 2015, 36 : 2985 - 3000
  • [2] Experimental study of storage capacity and discharging rate of latent heat thermal energy storage units
    Fang, Yuhang
    Xu, Hongtao
    Miao, Yubo
    Bai, Zhirui
    Niu, Jianlei
    Deng, Shiming
    APPLIED ENERGY, 2020, 275
  • [3] Simulative Investigation of Thermal Capacity Analysis Methods for Metallic Latent Thermal Energy Storage Systems
    Stahl, Veronika
    Kraft, Werner
    Vetter, Peter
    Feder, Florian
    ENERGIES, 2021, 14 (08)
  • [4] Separation of power and capacity in latent heat energy storage
    Pointner, H.
    Steinmann, W. D.
    Eck, M.
    Bachelier, C.
    INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, SOLARPACES 2014, 2015, 69 : 997 - 1005
  • [5] NUMERICAL SIMULATION ON THE EFFECT OF LATENT HEAT THERMAL ENERGY STORAGE UNIT
    Korti, Abdel Illah Nabil
    JOURNAL OF THERMAL ENGINEERING, 2016, 2 (01): : 598 - 606
  • [6] Effect of phase separation and supercooling on the storage capacity in a commercial latent heat thermal energy storage: Experimental cycling of a salt hydrate PCM
    Tan, Pepe
    Lindberg, Patrik
    Eichler, Kaia
    Loveryd, Per
    Johansson, Par
    Kalagasidis, Angela Sasic
    JOURNAL OF ENERGY STORAGE, 2020, 29
  • [7] Investigation of a latent heat thermal energy storage system
    Morcos, V.H., 1600, (07): : 2 - 3
  • [8] Latent heat thermal storage (LHTS) for energy sustainability
    Anisur, M.R.
    Kibria, M.A.
    Mahfuz, M.H.
    Metselaar, I.H.S.C.
    Saidur, R.
    Green Energy and Technology, 2015, 201 : 245 - 263
  • [9] Convective Effects in a Latent Heat Thermal Energy Storage
    Fornarelli, Francesco
    Camporeale, Sergio Mario
    Fortunato, Bernardo
    HEAT TRANSFER ENGINEERING, 2021, 42 (01) : 1 - 22
  • [10] Experimental comparison of the dynamic operations of a sensible heat thermal energy storage and a latent heat thermal energy storage system
    Shobo, A. B.
    Mawire, Ashmore
    PROCEEDINGS OF THE 2017 TWENTY FIFTH INTERNATIONAL CONFERENCE ON THE DOMESTIC USE OF ENERGY (DUE), 2017, : 240 - 247