A computational method for a class of non-standard time optimal control problems involving multiple time horizons

被引:9
作者
Farhadinia, B. [2 ]
Teo, K. L. [1 ]
Loxton, R. C. [1 ]
机构
[1] Curtin Univ Technol, Dept Math & Stat, Perth, WA, Australia
[2] Univ Mohaghegh Ardabil, Dept Math, Ardebil, Iran
关键词
Optimal control problem; Multiple time horizons; Discrete filled function method; Time scaling transformation; Control parametrization enhancing technique;
D O I
10.1016/j.mcm.2008.08.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider a class of non-standard time optimal control problems involving a dynamical system consisting of multiple subsystems evolving over different time horizons. Different subsystems are required to reach their respective target sets at different termination times. The goal is to minimize the maximum of these termination times. By introducing a discrete variable to represent the system termination ordering, were formulate this problem as a discrete optimization problem. A discrete filled function method is developed to solve this discrete optimization problem. For illustration, a numerical example is solved. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1682 / 1691
页数:10
相关论文
共 13 条
[1]  
[Anonymous], 1999, SPRINGER SCI
[2]   Multi-target control problems [J].
Doyen, L ;
Quincampoix, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 93 (01) :121-139
[3]   A MINIMUM TRAPPING TIME PROBLEM IN OPTIMAL-CONTROL THEORY [J].
FISHER, ME ;
NOAKES, JL ;
TEO, KL .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1990, 32 :100-114
[4]  
JENNINGS LS, 1990, MISER 3 OPTIMAL CONT
[5]   Computational method for time-optimal switching control [J].
Kaya, CY ;
Noakes, JL .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 117 (01) :69-92
[6]  
Lee H., 1997, Dynamic Systems and Applications, V6, P243
[7]   THE TUNNELING ALGORITHM FOR THE GLOBAL MINIMIZATION OF FUNCTIONS [J].
LEVY, AV ;
MONTALVO, A .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (01) :15-29
[8]   MILP modelling for the time optimal control problem in the case of multiple targets [J].
Mehne, HH ;
Farahi, MH ;
Kamyad, AV .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2006, 27 (02) :77-91
[9]  
Rehbock V, 2007, J IND MANAG OPTIM, V3, P585
[10]   A filled function method for finding a global minimizer on global integer optimization [J].
Shang, YL ;
Zhang, LS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 181 (01) :200-210