Topological tight-binding models from nontrivial square roots

被引:103
作者
Arkinstall, J. [1 ]
Teimourpour, M. H. [2 ,3 ]
Feng, L. [4 ]
El-Ganainy, R. [2 ,3 ]
Schomerus, H. [1 ]
机构
[1] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
[2] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
[3] Michigan Technol Univ, Henes Ctr Quantum Phenomena, Houghton, MI 49931 USA
[4] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
基金
英国工程与自然科学研究理事会;
关键词
RANDOM-MATRIX THEORY; STATES; PHASE; INDEX; SYMMETRY; THEOREMS; CHAINS; FIELD;
D O I
10.1103/PhysRevB.95.165109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We describe a versatile mechanism that provides tight-binding models with an enriched, topologically nontrivial band structure. The mechanism is algebraic in nature, and leads to tight-binding models that can be interpreted as a nontrivial square root of a parent lattice Hamiltonian-in analogy to the passage from a Klein-Gordon equation to a Dirac equation. In the tight-binding setting, the square-root operation admits to induce spectral symmetries at the expense of broken crystal symmetries. As we illustrate in detail for a simple one-dimensional example, the emergent and inherited spectral symmetries equip the energy gaps with independent topological quantum numbers that control the formation of topologically protected states. We also describe an implementation of this system in silicon photonic structures, outline applications in higher dimensions, and provide a general argument for the origin and nature of the emergent symmetries, which are typically nonsymmorphic.
引用
收藏
页数:16
相关论文
共 63 条
[1]   Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW B, 1997, 55 (02) :1142-1161
[2]  
Atala M, 2013, NAT PHYS, V9, P795, DOI [10.1038/nphys2790, 10.1038/NPHYS2790]
[3]   HEAT EQUATION AND INDEX THEOREM [J].
ATIYAH, M ;
BOTT, R ;
PATODI, VK .
INVENTIONES MATHEMATICAE, 1973, 19 (04) :279-330
[4]   INDEX OF ELLIPTIC OPERATORS ON COMPACT MANIFOLDS [J].
ATIYAH, MF ;
SINGER, IM .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1963, 69 (03) :422-&
[5]   Random-matrix theory of Majorana fermions and topological superconductors [J].
Beenakker, C. W. J. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (03) :1037-1066
[6]   WITTEN INDEX, AXIAL ANOMALY, AND KREIN SPECTRAL SHIFT FUNCTION IN SUPERSYMMETRIC QUANTUM-MECHANICS [J].
BOLLE, D ;
GESZTESY, F ;
GROSSE, H ;
SCHWEIGER, W ;
SIMON, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (07) :1512-1525
[7]   RELATIVE INDEX THEOREMS AND SUPERSYMMETRIC SCATTERING-THEORY [J].
BORISOV, NV ;
MULLER, W ;
SCHRADER, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 114 (03) :475-513
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   Classification of topological quantum matter with symmetries [J].
Chiu, Ching-Kai ;
Teo, Jeffrey C. Y. ;
Schnyder, Andreas P. ;
Ryu, Shinsei .
REVIEWS OF MODERN PHYSICS, 2016, 88 (03)
[10]   Discretizing light behaviour in linear and nonlinear waveguide lattices [J].
Christodoulides, DN ;
Lederer, F ;
Silberberg, Y .
NATURE, 2003, 424 (6950) :817-823