Disparity Refinement Based on Feature Classification and Local Propagation for Stereo Matching

被引:1
作者
Zhao, Hanqing [1 ]
Wan, Yi [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Gansu, Peoples R China
来源
INTERNATIONAL CONFERENCE ON COMPUTER VISION, APPLICATION, AND DESIGN (CVAD 2021) | 2021年 / 12155卷
关键词
Stereo matching; disparity refinement; consistency check; multistep refinement; occlusion detection; outlier detection; disparity propagation; postprocessing strategies;
D O I
10.1117/12.2626551
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Stereo matching usually makes up of four steps: cost computation, cost aggregation, disparity optimization, and disparity refinement. The disparity refinement is used to further eliminate mismatches caused by occlusion, low texture, and other factors. The popular refinement methods are based on the consistency check of left and right two disparity maps. For efficiency, we propose a novel multistep disparity refinement framework using only one-sided image, which is organized into four main steps: leftmost occlusion detection, four-directional scanline outlier detection, black hole detection and eight-directional disparity propagation. Experimental results on Middlebury datasets show that our method is comparable with other postprocessing strategies, especially in occlusion handling, retaining object shapes and preserving discontinuities.
引用
收藏
页数:6
相关论文
共 27 条
[1]  
Banno Atsuhiko, 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, P1870, DOI 10.1109/ICCVW.2009.5457510
[2]   Stereo Matching via Dual Fusion [J].
Dong, Huixin ;
Wang, Tingwei ;
Yu, Xingrui ;
Ren, Peng .
IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (05) :615-619
[3]   Sparse Stereo Disparity Map Densification Using Hierarchical Image Segmentation [J].
Drouyer, Sebastien ;
Beucher, Serge ;
Bilodeau, Michel ;
Moreaud, Maxime ;
Sorbier, Loic .
MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO SIGNAL AND IMAGE PROCESSING (ISMM 2017), 2017, 10225 :172-184
[4]   Detect, Replace, Refine: Deep Structured Prediction For Pixel Wise Labeling [J].
Gidaris, Spyros ;
Komodakis, Nikos .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :7187-7196
[5]   Guided Image Filtering [J].
He, Kaiming ;
Sun, Jian ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (06) :1397-1409
[6]  
Hirschmüller H, 2008, IEEE T PATTERN ANAL, V30, P328, DOI [10.1109/TPAMI.2007.1166, 10.1109/TPAMl.2007.1166]
[7]   Fast Cost-Volume Filtering for Visual Correspondence and Beyond [J].
Hosni, Asmaa ;
Rhemann, Christoph ;
Bleyer, Michael ;
Rother, Carsten ;
Gelautz, Margrit .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (02) :504-511
[8]   An O(1) disparity refinement method for stereo matching [J].
Huang, Xiaoming ;
Zhang, Yu-Jin .
PATTERN RECOGNITION, 2016, 55 :198-206
[9]   Color Image-Guided Boundary-Inconsistent Region Refinement for Stereo Matching [J].
Jiao, Jianbo ;
Wang, Ronggang ;
Wang, Wenmin ;
Li, Dagang ;
Gao, Wen .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (05) :1155-1159
[10]  
Jie Li, 2020, 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), P522, DOI 10.1109/ICIEA48937.2020.9248208