Unconventional strengthening of the bipartite entanglement of a mixed spin-(1/2,1) Heisenberg dimer achieved through Zeeman splitting

被引:27
作者
Cencarikova, Hana [1 ]
Strecka, Jozef [2 ]
机构
[1] Slovak Acad Sci, Inst Expt Phys, Watsonova 47, Kosice 04001, Slovakia
[2] Safarik Univ, Fac Sci, Dept Theoret Phys & Astrophys, Pk Angelinum 9, Kosice 04001, Slovakia
关键词
Ion exchange - Ground state - Ferrimagnetism - Anisotropy - Ions - Titration;
D O I
10.1103/PhysRevB.102.184419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bipartite quantum and thermal entanglement is quantified within pure and mixed states of a mixed spin-(1/2, 1) Heisenberg dimer with the help of negativity. It is shown that the negativity, which may serve as a measure of the bipartite entanglement at zero as well as nonzero temperatures, strongly depends on intrinsic parameters-for instance, exchange and uniaxial single-ion anisotropy-in addition to extrinsic parameters such as temperature and magnetic field. It turns out that a rising magnetic field unexpectedly reinforces the bipartite entanglement due to the Zeeman splitting of energy levels, which lifts the twofold degeneracy of the quantum ferrimagnetic ground state. The maximal bipartite entanglement is thus reached within a quantum ferrimagnetic phase at sufficiently low but nonzero magnetic fields under the assumption that the gyromagnetic g factors of the spin-1/2 and spin-1 magnetic ions are equal and the uniaxial single-ion anisotropy is half of the exchange constant. It is suggested that the heterodinuclear complex [Ni(dpt)(H2O)Cu(pba)] center dot 2H(2)O [pba = 1,3-propylenebis(oxamato) and dpt = bis-(3-aminopropyl)amine], which affords an experimental realization of the mixed spin-(1/2, 1) Heisenberg dimer, remains strongly entangled up to relatively high temperatures (about 115 K) and magnetic fields (about 140 T) that are comparable with the relevant exchange constant.
引用
收藏
页数:14
相关论文
共 76 条
[1]   Entanglement, magnetic and quadrupole moments properties of the mixed spin Ising-Heisenberg diamond chain [J].
Abgaryan, V. S. ;
Ananikian, N. S. ;
Ananikyan, L. N. ;
Hovhannisyan, V. .
SOLID STATE COMMUNICATIONS, 2015, 203 :5-9
[2]   Entanglement control in an anisotropic two-qubit Heisenberg XYZ model with external magnetic fields [J].
Abliz, Ahmad ;
Gao, H. J. ;
Xie, X. C. ;
Wu, Y. S. ;
Liu, W. M. .
PHYSICAL REVIEW A, 2006, 74 (05)
[3]   Quantum entanglement in nitrosyl iron complexes [J].
Aldoshin, S. M. ;
Feldman, E. B. ;
Yurishchev, M. A. .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2008, 107 (05) :804-811
[4]   Ground states, magnetization plateaus and bipartite entanglement of frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tubes [J].
Alecio, Raphael C. ;
Lyra, Marcelo L. ;
Strecka, Jozef .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 417 :294-301
[5]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[6]  
[Anonymous], 1984, Theory of neutron scattering from condensed matter
[7]   Natural thermal and magnetic entanglement in the 1D Heisenberg model [J].
Arnesen, MC ;
Bose, S ;
Vedral, V .
PHYSICAL REVIEW LETTERS, 2001, 87 (01)
[8]   Thermal entanglement properties of small spin clusters [J].
Bose, I ;
Tribedi, A .
PHYSICAL REVIEW A, 2005, 72 (02)
[9]   Thermal entanglement between alternate qubits of a four-qubit Heisenberg XX chain in a magnetic field -: art. no. 034311 [J].
Cao, M ;
Zhu, SQ .
PHYSICAL REVIEW A, 2005, 71 (03)
[10]  
Carlin R.L., 1986, MAGNETOCHEMISTRY