Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications

被引:433
作者
Zhang, Songnan [1 ]
Huang, Jianying [1 ]
Chen, Zhong [2 ]
Lai, Yuekun [1 ]
机构
[1] Soochow Univ, Coll Text & Clothing Engn, Natl Engn Lab Modern Silk, Suzhou 215123, Peoples R China
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave,, Singapore 639798, Singapore
关键词
EMERGING ORGANIC CONTAMINANTS; SUPERHYDROPHOBIC PATTERNED SURFACE; TIO2 NANOSTRUCTURE SURFACES; SPIDER SILK PROTEINS; COLLECTION EFFICIENCY; SEAWATER DESALINATION; MICROFLUIDIC FABRICATION; CONTROLLABLE WETTABILITY; DROPWISE CONDENSATION; FACILE FABRICATION;
D O I
10.1002/smll.201602992
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nowadays, the pollution of water has become worse in many parts of the world, which causes a severe shortage of clean water and attracts widespread attention worldwide. Bioinspired from nature, i.e. spider silk, cactus, Namib desert beetle, Nepenthes alata, special wettability surfaces have attracted great interest from fundamental research to water-harvesting applications. Here, recently published literature about creatures possessing water-harvesting ability are reviewed, with a focus on the corresponding water-harvesting mechanisms of creatures in dry or arid regions, consisting of the theory of wetting and transporting. Then a detailed account of the innovative fabrication technologies and bionic water-harvesting materials with special wetting are summarized, i.e. bio-inspired artificial spider silk, bio-inspired artificial cactus-like structures, and bio-inspired artificial Namib desert beetle-like surfaces. Special attentions are paid to the discussion of the advantages and disadvantages of the technologies, as well as factors that affect the amount of water-harvesting. Finally, conclusions, future outlooks and the current challenges for future development of the water-harvesting technology are presented and discussed.
引用
收藏
页数:28
相关论文
共 179 条
[1]   The sustainability and resilience of global water and food systems: Political analysis of the interplay between security, resource scarcity, political systems and global trade [J].
Allouche, Jeremy .
FOOD POLICY, 2011, 36 :S3-S8
[2]   Three-Dimensional Hierarchical Structures for Fog Harvesting [J].
Andrews, H. G. ;
Eccles, E. A. ;
Schofield, W. C. E. ;
Badyal, J. P. S. .
LANGMUIR, 2011, 27 (07) :3798-3802
[3]   Fog collecting biomimetic surfaces: Influence of microstructure and wettability [J].
Azad, M. A. K. ;
Ellerbrok, D. ;
Barthlott, W. ;
Koch, K. .
BIOINSPIRATION & BIOMIMETICS, 2015, 10 (01)
[4]   Low-cost adsorbents for heavy metals uptake from contaminated water: a review [J].
Babel, S ;
Kurniawan, TA .
JOURNAL OF HAZARDOUS MATERIALS, 2003, 97 (1-3) :219-243
[5]   Biomimetic "Cactus Spine" with Hierarchical Groove Structure for Efficient Fog Collection [J].
Bai, Fan ;
Wu, Juntao ;
Gong, Guangming ;
Guo, Lin .
ADVANCED SCIENCE, 2015, 2 (07)
[6]   Efficient Water Collection on Integrative Bioinspired Surfaces with Star-Shaped Wettability Patterns [J].
Bai, Hao ;
Wang, Lin ;
Ju, Jie ;
Sun, Ruize ;
Zheng, Yongmei ;
Jiang, Lei .
ADVANCED MATERIALS, 2014, 26 (29) :5025-5030
[7]   Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection [J].
Bai, Hao ;
Sun, Ruize ;
Ju, Jie ;
Yao, Xi ;
Zheng, Yongmei ;
Jiang, Lei .
SMALL, 2011, 7 (24) :3429-3433
[8]   Controlled Fabrication and Water Collection Ability of Bioinspired Artificial Spider Silks [J].
Bai, Hao ;
Ju, Jie ;
Sun, Ruize ;
Chen, Yuan ;
Zheng, Yongmei ;
Jiang, Lei .
ADVANCED MATERIALS, 2011, 23 (32) :3708-+
[9]   Direction Controlled Driving of Tiny Water Drops on Bioinspired Artificial Spider Silks [J].
Bai, Hao ;
Tian, Xuelin ;
Zheng, Yongmei ;
Ju, Jie ;
Zhao, Yong ;
Jiang, Lei .
ADVANCED MATERIALS, 2010, 22 (48) :5521-5525
[10]   Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review [J].
Bhatnagar, Amit ;
Sillanpaa, Mika .
CHEMICAL ENGINEERING JOURNAL, 2010, 157 (2-3) :277-296