Methods and strategies for achieving high-performance carbon-based perovskite solar cells without hole transport materials

被引:97
作者
Chen, Haining [1 ]
Yang, Shihe [2 ,3 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[2] Peking Univ, Guangdong Key Lab Nanomicro Mat Res, Sch Chem Biol & Biotechnol, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
CONDUCTOR-FREE; LOW-TEMPERATURE; HIGH-EFFICIENCY; COUNTER ELECTRODE; LARGE-AREA; HALIDE PEROVSKITES; THERMAL-STABILITY; LAYER; EXTRACTION; PLANAR;
D O I
10.1039/c9ta04707g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Perovskite solar cells (PSCs) have garnered great attention from the scientific community due to their high power conversion efficiency (PCE) achieved via low-cost and solution-processed fabrication techniques. However, their low stability has hindered their commercialization. Replacing hole transport materials (HTMs) and Au electrodes with carbon electrodes is a promising way to address the stability issues of PSCs because carbon materials are stable, inert to ion migration, and inherently water-resistant. So far, carbon-based PSCs without HTMs (C-PSCs) have seen much progress and their PCEs have been promoted to above 16%. Herein, we comb through the recent developments in designing, fabricating and optimizing high-performance C-PSCs. First, some key issues peculiar to C-PSCs in terms of the device structure and working principles of C-PSCs, which are different from those of HTM-based PSCs, are stressed. Then, the specific methods and strategies for achieving high-performance C-PSCs are summarized and discussed, which are categorized by the electron transport materials, perovskite layer and carbon electrode. Finally, an outlook is provided, with an aim to point out the promising research directions to further improve device performance and push the technology for commercialization.
引用
收藏
页码:15476 / 15490
页数:15
相关论文
共 139 条
[1]   Achieving long-term stable perovskite solar cells via ion neutralization [J].
Back, Hyungcheol ;
Kim, Geunjin ;
Kim, Junghwan ;
Kong, Jaemin ;
Kim, Tae Kyun ;
Kang, Hongkyu ;
Kim, Heejoo ;
Lee, Jinho ;
Lee, Seongyu ;
Lee, Kwanghee .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (04) :1258-1263
[2]   Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers [J].
Bag, Monojit ;
Renna, Lawrence A. ;
Jeong, Seung Pyo ;
Han, Xu ;
Cutting, Christie L. ;
Maroudas, Dimitrios ;
Venkataraman, D. .
CHEMICAL PHYSICS LETTERS, 2016, 662 :35-41
[3]   Cubic: Column composite structure (NH2CH=NH2)x(CH3NH3)1-xPbI3 for efficient hole-transport material-free and insulation layer free perovskite solar cells with high stability [J].
Bai, Sihang ;
Cheng, Nian ;
Yu, Zhenhua ;
Liu, Pei ;
Wang, Changlei ;
Zhao, Xing-Zhong .
ELECTROCHIMICA ACTA, 2016, 190 :775-779
[4]   Dimensional Engineering of a Graded 3D-2D Halide Perovskite Interface Enables Ultrahigh Voc Enhanced Stability in the p-i-n Photovoltaics [J].
Bai, Yang ;
Xiao, Shuang ;
Hu, Chen ;
Zhang, Teng ;
Meng, Xiangyue ;
Lin, He ;
Yang, Yinglong ;
Yang, Shihe .
ADVANCED ENERGY MATERIALS, 2017, 7 (20)
[5]   A pure and stable intermediate phase is key to growing aligned and vertically monolithic perovskite crystals for efficient PIN planar perovskite solar cells with high processibility and stability [J].
Bai, Yang ;
Xiao, Shuang ;
Hu, Chen ;
Zhang, Teng ;
Meng, Xiangyue ;
Li, Qiang ;
Yang, Yinglong ;
Wong, Kam Sing ;
Chen, Haining ;
Yang, Shihe .
NANO ENERGY, 2017, 34 :58-68
[6]   Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance [J].
Bai, Yang ;
Chen, Haining ;
Xiao, Shuang ;
Xue, Qifan ;
Zhang, Teng ;
Zhu, Zonglong ;
Li, Qiang ;
Hu, Chen ;
Yang, Yun ;
Hu, Zhicheng ;
Huang, Fei ;
Wong, Kam Sing ;
Yip, Hin-Lap ;
Yang, Shihe .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (17) :2950-2958
[7]   Thermal Degradation Analysis of Sealed Perovskite Solar Cell with Porous Carbon Electrode at 100 °C for 7000 h [J].
Baranwal, Ajay K. ;
Kanda, Hiroyuki ;
Shibayama, Naoyuki ;
Masutani, Hideaki ;
Peiris, T. A. Nirmal ;
Kanaya, Shusaku ;
Segawa, Hiroshi ;
Miyasaka, Tsutomu ;
Ito, Seigo .
ENERGY TECHNOLOGY, 2019, 7 (02) :245-252
[8]   100°C Thermal Stability of Printable Perovskite Solar Cells Using Porous Carbon Counter Electrodes [J].
Baranwal, Ajay K. ;
Kanaya, Shusaku ;
Peiris, T. A. Nirmal ;
Mizuta, Gai ;
Nishina, Tomoya ;
Kanda, Hiroyuki ;
Miyasaka, Tsutomu ;
Segawa, Hiroshi ;
Ito, Seigo .
CHEMSUSCHEM, 2016, 9 (18) :2604-2608
[9]   Organometal halide perovskite solar cells: degradation and stability [J].
Berhe, Taame Abraha ;
Su, Wei-Nien ;
Chen, Ching-Hsiang ;
Pan, Chun-Jern ;
Cheng, Ju-Hsiang ;
Chen, Hung-Ming ;
Tsai, Meng-Che ;
Chen, Liang-Yih ;
Dubale, Amare Aregahegn ;
Hwang, Bing-Joe .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) :323-356
[10]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+