Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications

被引:78
作者
Rosenthal, Amir [1 ]
Kellnberger, Stephan
Bozhko, Dmitry
Chekkoury, Andrei
Omar, Murad
Razansky, Daniel
Ntziachristos, Vasilis
机构
[1] Tech Univ Munich, IBMI, D-85764 Neuherberg, Germany
基金
欧洲研究理事会;
关键词
interferometry; sensing; ultrasound; optoacoustics; imaging; OPTICAL-FIBER; STRAIN SENSOR; RESONATORS;
D O I
10.1002/lpor.201300204
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Miniaturized optical detectors of ultrasound represent a promising alternative to piezoelectric technology and may enable new minimally invasive clinical applications, particularly in the field of optoacoustic imaging. However, the use of such detectors has so far been limited to controlled lab environments, and has not been demonstrated in the presence of mechanical disturbances, common in clinical imaging scenarios. Additionally, detection sensitivity has been inherently limited by laser noise, which hindered the use of sensing elements such as optical fibers, which exhibit a weak response to ultrasound. In this work, coherence-restored pulse interferometry (CRPI) is introduced - a new paradigm for interferometric sensing in which shot-noise limited sensitivity may be achieved alongside robust operation. CRPI is implemented with a fiber-based resonator, demonstrating over an order of magnitude higher sensitivity than that of conventional 15MHz intravascular ultrasound probes. The performance of the optical detector is showcased in a miniaturized all-optical optoacoustic imaging catheter.
引用
收藏
页码:450 / 457
页数:8
相关论文
共 31 条
[1]   High-Q photonic nanocavity in a two-dimensional photonic crystal [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
NATURE, 2003, 425 (6961) :944-947
[2]   Musical instrument pickup based on a laser locked to an optical fiber resonator [J].
Avino, Saverio ;
Barnes, Jack A. ;
Gagliardi, Gianluca ;
Gu, Xijia ;
Gutstein, David ;
Mester, James R. ;
Nicholaou, Costa ;
Loock, Hans-Peter .
OPTICS EXPRESS, 2011, 19 (25) :25057-25065
[3]  
Bay E., LASERS MED IN PRESS
[4]   On-chip optical isolation in monolithically integrated non-reciprocal optical resonators [J].
Bi, Lei ;
Hu, Juejun ;
Jiang, Peng ;
Kim, Dong Hun ;
Dionne, Gerald F. ;
Kimerling, Lionel C. ;
Ross, C. A. .
NATURE PHOTONICS, 2011, 5 (12) :758-762
[5]   Polymer Microring Resonators for High-Sensitivity and Wideband Photoacoustic Imaging [J].
Chen, Sung-Liang ;
Huang, Sheng-Wen ;
Ling, Tao ;
Ashkenazi, Shai ;
Guo, L. Jay .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2009, 56 (11) :2482-2491
[6]   Demonstration of a passive subpicostrain fiber strain sensor [J].
Chow, JH ;
McClelland, DE ;
Gray, MB ;
Littler, ICM .
OPTICS LETTERS, 2005, 30 (15) :1923-1925
[7]   Probing the Ultimate Limit of Fiber-Optic Strain Sensing [J].
Gagliardi, G. ;
Salza, M. ;
Avino, S. ;
Ferraro, P. ;
De Natale, P. .
SCIENCE, 2010, 330 (6007) :1081-1084
[8]   High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications [J].
Gallego, Daniel ;
Lamela, Horacio .
OPTICS LETTERS, 2009, 34 (12) :1807-1809
[9]   Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals [J].
Gateau, Jerome ;
Caballero, Miguel Angel Araque ;
Dima, Alexander ;
Ntziachristos, Vasilis .
MEDICAL PHYSICS, 2013, 40 (01)
[10]   Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique [J].
Gatti, D. ;
Galzerano, G. ;
Janner, D. ;
Longhi, S. ;
Laporta, P. .
OPTICS EXPRESS, 2008, 16 (03) :1945-1950