Asymptotic stability of stationary solutions for Hall magnetohydrodynamic equations

被引:1
作者
Tan, Zhong [1 ]
Tong, Leilei [1 ]
机构
[1] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2018年 / 69卷 / 03期
基金
中国国家自然科学基金;
关键词
Hall MHD equations; Stationary solutions; Time decay rate; Energy method; STOKES-POISSON SYSTEM; LARGE-TIME BEHAVIOR; OPTIMAL DECAY-RATE; MACH NUMBER LIMIT; GLOBAL EXISTENCE; REGULARITY CRITERIA; CLASSICAL-SOLUTIONS; WELL-POSEDNESS; COULOMB FORCE; DIMENSIONS;
D O I
10.1007/s00033-018-0944-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the large time behavior of the compressible Hall magnetohydrodynamic equations with Coulomb force in R-3 near the non-constant equilibrium state. We derive the global existence provided that the initial perturbation is sufficiently small. Moreover, under the further assumption that the doping profile is of small variation, we obtain the convergence rates by combining the linear L-p-L-q decay estimates.
引用
收藏
页数:28
相关论文
共 41 条
[1]   KINETIC FOR MULATION AND GLOBAL EXISTENCE FOR THE HALL-MAGNETO-HYDRODYNAMICS SYSTEM [J].
Acheritogaray, Marion ;
Degond, Pierre ;
Frouvelle, Amic ;
Liu, Jian-Guo .
KINETIC AND RELATED MODELS, 2011, 4 (04) :901-918
[2]   Local Well-Posedness for the Hall-MHD Equations with Fractional Magnetic Diffusion [J].
Chae, Dongho ;
Wan, Renhui ;
Wu, Jiahong .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2015, 17 (04) :627-638
[3]   Well-posedness for Hall-magnetohydrodynamics [J].
Chae, Dongho ;
Degond, Pierre ;
Liu, Jian-Guo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03) :555-565
[4]   the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics [J].
Chae, Dongho ;
Lee, Jihoon .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (11) :3835-3858
[5]   On the temporal decay for the Hall-magnetohydrodynamic equations [J].
Chae, Dongho ;
Schonbek, Maria .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) :3971-3982
[6]   Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations [J].
Chen, Qing ;
Tan, Zhong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4438-4451
[7]   Global variational solutions to the compressible magnetohydrodynamic equations [J].
Fan, Jishan ;
Yu, Wanghui .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) :3637-3660
[8]   Strong solution to the compressible magnetohydrodynamic equations with vacuum [J].
Fan, Jishan ;
Yu, Wanghui .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) :392-409
[9]   A Regularity Criterion for the Density-Dependent Hall-Magnetohydrodynamics [J].
Fan, Jishan ;
Alsaedi, Ahmed ;
Fukumoto, Yasuhide ;
Hayat, Tasawar ;
Zhou, Yong .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (03) :277-284
[10]   On strong solutions to the compressible Hall-magnetohydrodynamic system [J].
Fan, Jishan ;
Alsaedi, Ahmed ;
Hayat, Tasawar ;
Nakamura, Gen ;
Zhou, Yong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 :423-434