State-specific projection of COVID-19 infection in the United States and evaluation of three major control measures

被引:20
作者
Chen, Shi [1 ]
Li, Qin [1 ]
Gao, Song [2 ]
Kang, Yuhao [2 ]
Shi, Xun [3 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Geog, GeoDS Lab, Madison, WI 53706 USA
[3] Dartmouth Coll, Dept Geog, Hanover, NH 03755 USA
基金
美国国家科学基金会;
关键词
MODELS;
D O I
10.1038/s41598-020-80044-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most models of the COVID-19 pandemic in the United States do not consider geographic variation and spatial interaction. In this research, we developed a travel-network-based susceptible-exposed-infectious-removed (SEIR) mathematical compartmental model system that characterizes infections by state and incorporates inflows and outflows of interstate travelers. Modeling reveals that curbing interstate travel when the disease is already widespread will make little difference. Meanwhile, increased testing capacity (facilitating early identification of infected people and quick isolation) and strict social-distancing and self-quarantine rules are most effective in abating the outbreak. The modeling has also produced state-specific information. For example, for New York and Michigan, isolation of persons exposed to the virus needs to be imposed within 2 days to prevent a broad outbreak, whereas for other states this period can be 3.6 days. This model could be used to determine resources needed before safely lifting state policies on social distancing.
引用
收藏
页数:9
相关论文
共 38 条
[1]  
Alagoz Oguzhan, 2020, medRxiv, DOI 10.1101/2020.06.07.20124859
[2]   Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility [J].
Arons, M. M. ;
Hatfield, K. M. ;
Reddy, S. C. ;
Kimball, A. ;
James, A. ;
Jacobs, J. R. ;
Taylor, J. ;
Spicer, K. ;
Bardossy, A. C. ;
Oakley, L. P. ;
Tanwar, S. ;
Dyal, J. W. ;
Harney, J. ;
Chisty, Z. ;
Bell, J. M. ;
Methner, M. ;
Paul, P. ;
Carlson, C. M. ;
McLaughlin, H. P. ;
Thornburg, N. ;
Tong, S. ;
Tamin, A. ;
Tao, Y. ;
Uehara, A. ;
Harcourt, J. ;
Clark, S. ;
Brostrom-Smith, C. ;
Page, L. C. ;
Kay, M. ;
Lewis, J. ;
Montgomery, P. ;
Stone, N. D. ;
Clark, T. A. ;
Honein, M. A. ;
Duchin, J. S. ;
Jernigan, J. A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (22) :2081-2090
[3]  
Brauer F, 2008, LECT NOTES MATH, V1945, P19
[4]   The Hidden Geometry of Complex, Network-Driven Contagion Phenomena [J].
Brockmann, Dirk ;
Helbing, Dirk .
SCIENCE, 2013, 342 (6164) :1337-1342
[5]   Aggregated mobility data could help fight COVID-19 [J].
Buckee, Caroline O. ;
Balsari, Satchit ;
Chan, Jennifer ;
Crosas, Merce ;
Dominici, Francesca ;
Gasser, Urs ;
Grad, Yonatan H. ;
Grenfell, Bryan ;
Halloran, M. Elizabeth ;
Kraemer, Moritz U. G. ;
Lipsitch, Marc ;
Metcalf, C. Jessica E. ;
Meyers, Lauren Ancel ;
Perkins, T. Alex ;
Santillana, Mauricio ;
Scarpino, Samuel V. ;
Viboud, Cecile ;
Wesolowski, Amy ;
Schroeder, Andrew .
SCIENCE, 2020, 368 (6487) :145-146
[6]  
Chinazzi M, 2020, SCIENCE, V368, P395, DOI [10.1126/science.aba9757, 10.1101/2020.02.09.20021261]
[7]   An interactive web-based dashboard to track COVID-19 in real time [J].
Dong, Ensheng ;
Du, Hongru ;
Gardner, Lauren .
LANCET INFECTIOUS DISEASES, 2020, 20 (05) :533-534
[8]   Societal Learning in Epidemics: Intervention Effectiveness during the 2003 SARS Outbreak in Singapore [J].
Drake, John M. ;
Chew, Suok Kai ;
Ma, Stefan .
PLOS ONE, 2006, 1 (01)
[9]   Risk for Transportation of Coronavirus Disease from Wuhan to Other Cities in China [J].
Du, Zhanwei ;
Wang, Lin ;
Cauchemez, Simon ;
Xu, Xiaoke ;
Wang, Xianwen ;
Cowling, Benjamin J. ;
Meyers, Lauren Ancel .
EMERGING INFECTIOUS DISEASES, 2020, 26 (05) :1049-1052
[10]   The Ensemble Kalman Filter for Combined State and Parameter Estimation MONTE CARLO TECHNIQUES FOR DATA ASSIMILATION IN LARGE SYSTEMS [J].
Evensen, Geir .
IEEE CONTROL SYSTEMS MAGAZINE, 2009, 29 (03) :83-104