Optimizing Surface Chemistry of PbS Colloidal Quantum Dot for Highly Efficient and Stable Solar Cells via Chemical Binding

被引:65
作者
Hu, Long [1 ,2 ]
Lei, Qi [1 ]
Guan, Xinwei [1 ]
Patterson, Robert [3 ]
Yuan, Jianyu [4 ]
Lin, Chun-Ho [1 ]
Kim, Jiyun [1 ]
Geng, Xun [1 ]
Younis, Adnan [1 ]
Wu, Xianxin [5 ]
Liu, Xinfeng [5 ]
Wan, Tao [1 ]
Chu, Dewei [1 ]
Wu, Tom [1 ]
Huang, Shujuan [2 ,3 ]
机构
[1] Univ New South Wales UNSW, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[2] Macquarie Univ, Sustainable Energy Res Ctr, Sch Engn, Sydney, NSW 2109, Australia
[3] Univ New South Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2019, Australia
[4] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Jiangsu, Peoples R China
[5] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Standardizat & Measurement Nanotechno, Div Nanophoton, Beijing 100190, Peoples R China
基金
澳大利亚研究理事会;
关键词
chemical binding; PbS colloidal quantum dots; solar cells; surface chemistry; THIN-FILMS; LIGAND; SOLIDS; NANOCRYSTALS; ARCHITECTURE; PERFORMANCE; EXTRACTION; SULFIDE; LAYER;
D O I
10.1002/advs.202003138
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The surface chemistry of colloidal quantum dots (CQD) play a crucial role in fabricating highly efficient and stable solar cells. However, as-synthesized PbS CQDs are significantly off-stoichiometric and contain inhomogeneously distributed S and Pb atoms at the surface, which results in undercharged Pb atoms, dangling bonds of S atoms and uncapped sites, thus causing surface trap states. Moreover, conventional ligand exchange processes cannot efficiently eliminate these undesired atom configurations and defect sites. Here, potassium triiodide (KI3) additives are combined with conventional PbX2 matrix ligands to simultaneously eliminate the undercharged Pb species and dangling S sites via reacting with molecular I-2 generated from the reversible reaction KI3 I-2 + KI. Meanwhile, high surface coverage shells on PbS CQDs are built via PbX2 and KI ligands. The implementation of KI3 additives remarkably suppresses the surface trap states and enhances the device stability due to the surface chemistry optimization. The resultant solar cells achieve the best power convention efficiency of 12.1% and retain 94% of its initial efficiency under 20 h continuous operation in air, while the control devices with KI additive deliver an efficiency of 11.0% and retains 87% of their initial efficiency under the same conditions.
引用
收藏
页数:9
相关论文
共 65 条
[1]   High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange [J].
Aqoma, Havid ;
Al Mubarok, Muhibullah ;
Hadmojo, Wisnu Tantyo ;
Lee, Eun-Hye ;
Kim, Tae-Wook ;
Ahn, Tae Kyu ;
Oh, Seung-Hwan ;
Jang, Sung-Yeon .
ADVANCED MATERIALS, 2017, 29 (19)
[2]   Highly efficient air-stable colloidal quantum dot solar cells by improved surface trap passivation [J].
Azmi, Randi ;
Sinaga, Septy ;
Aqoma, Havid ;
Seo, Gabsoek ;
Ahn, Tae Kyu ;
Park, Minsuk ;
Ju, Sang-Yong ;
Lee, Jin-Won ;
Kim, Tae-Wook ;
Oh, Seung-Hwan ;
Jang, Sung-Yeon .
NANO ENERGY, 2017, 39 :86-94
[3]   Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine [J].
Bae, Wan Ki ;
Joo, Jin ;
Padilha, Lazaro A. ;
Won, Jonghan ;
Lee, Doh C. ;
Lin, Qianglu ;
Koh, Weon-kyu ;
Luo, Hongmei ;
Klimov, Victor I. ;
Pietryga, Jeffrey M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :20160-20168
[4]   Stoichiometric control of the density of states in PbS colloidal quantum dot solids [J].
Balazs, Daniel M. ;
Bijlsma, Klaas I. ;
Fang, Hong-Hua ;
Dirin, Dmitry N. ;
Dobeli, Max ;
Kovalenko, Maksym V. ;
Loi, Maria A. .
SCIENCE ADVANCES, 2017, 3 (09)
[5]   The role of surface passivation for efficient and photostable PbS quantum dot solar cells [J].
Cao, Yiming ;
Stavrinadis, Alexandros ;
Lasanta, Tania ;
So, David ;
Konstantatos, Gerasimos .
NATURE ENERGY, 2016, 1
[6]   Electronically Active Impurities in Colloidal Quantum Dot Solids [J].
Carey, Graham H. ;
Kramer, Illan J. ;
Kanjanaboos, Pongsakorn ;
Moreno-Bautista, Gabriel ;
Voznyy, Oleksandr ;
Rollny, Lisa ;
Tang, Joel A. ;
Hoogland, Sjoerd ;
Sargent, Edward H. .
ACS NANO, 2014, 8 (11) :11763-11769
[7]   Steric-Hindrance-Driven Shape Transition in PbS Quantum Dots: Understanding Size-Dependent Stability [J].
Choi, Hyekyoung ;
Ko, Jae-Hyeon ;
Kim, Yong-Hyun ;
Jeong, Sohee .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (14) :5278-5281
[8]   Stabilizing Surface Passivation Enables Stable Operation of Colloidal Quantum Dot Photovoltaic Devices at Maximum Power Point in an Air Ambient [J].
Choi, Jongmin ;
Choi, Min-Jae ;
Kim, Junghwan ;
Dinic, Filip ;
Todorovic, Petar ;
Sun, Bin ;
Wei, Mingyang ;
Baek, Se-Woong ;
Hoogland, Sjoerd ;
de Arquer, F. Pelayo Garcia ;
Voznyy, Oleksandr ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2020, 32 (07)
[9]   Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics [J].
Choi, Min-Jae ;
de Arquer, F. Pelayo Garcia ;
Proppe, Andrew H. ;
Seifitokaldani, Ali ;
Choi, Jongmin ;
Kim, Junghwan ;
Baek, Se-Woong ;
Liu, Mengxia ;
Sun, Bin ;
Biondi, Margherita ;
Scheffel, Benjamin ;
Walters, Grant ;
Nam, Dae-Hyun ;
Jo, Jea Woong ;
Ouellette, Olivier ;
Voznyy, Oleksandr ;
Hoogland, Sjoerd ;
Kelley, Shana O. ;
Jung, Yeon Sik ;
Sargent, Edward H. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]  
Chuang Chia-Hao M, 2014, Nat Mater, V13, P796, DOI 10.1038/nmat3984