Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering

被引:86
|
作者
Zhou, Changchun [1 ]
Ye, Xingjiang [1 ]
Fan, Yujiang [1 ]
Ma, Liang [2 ]
Tan, Yanfei [1 ]
Qing, Fangzu [1 ]
Zhang, Xingdong [1 ]
机构
[1] Sichuan Univ, Natl Engn Res Ctr Biomat, Chengdu 610064, Peoples R China
[2] Zhejiang Univ, Zhejiang Calif Int NanoSyst Inst, Hangzhou 301158, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
biomimetic material; calcium phosphate; collagen; mesenchcymal stem cell; bone tissue engineering; IN-VIVO; COMPOSITE SCAFFOLD; APATITE; VITRO; MATRIX; BIOCERAMICS; BEHAVIOR; SURFACE; PHASE; CELLS;
D O I
10.1088/1758-5082/6/3/035013
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Fabrication of three-dimensional porous scaffold based on collagen fiber and bioglass for bone tissue engineering
    Long, Teng
    Yang, Jun
    Shi, Shan-Shan
    Guo, Ya-Ping
    Ke, Qin-Fei
    Zhu, Zhen-An
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2015, 103 (07) : 1455 - 1464
  • [22] A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering: Evolution of scaffold design
    Lickorish, D.
    Guan, L.
    Davies, J. E.
    BIOMATERIALS, 2007, 28 (08) : 1495 - 1502
  • [23] A novel gelatin/carboxymethyl chitosan/nano-hydroxyapatite/β-tricalcium phosphate biomimetic nanocomposite scaffold for bone tissue engineering applications
    Sun, Qiushuo
    Yu, Lu
    Zhang, Zhuocheng
    Qian, Cheng
    Fang, Hongzhe
    Wang, Jintao
    Wu, Peipei
    Zhu, Xiaojing
    Zhang, Jian
    Zhong, Liangjun
    He, Rui
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [24] Preparation and characterization of collagen-hydroxyapatite composite used for bone tissue engineering scaffold
    Liu, LR
    Zhang, LH
    Ren, BZ
    Wang, FJ
    Zhang, QQ
    ARTIFICIAL CELLS BLOOD SUBSTITUTES AND IMMOBILIZATION BIOTECHNOLOGY, 2003, 31 (04): : 435 - 448
  • [25] Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering
    Gráinne M. Cunniffe
    Glenn R. Dickson
    Sonia Partap
    Kenneth T. Stanton
    Fergal J. O’Brien
    Journal of Materials Science: Materials in Medicine, 2010, 21 : 2293 - 2298
  • [26] Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering
    Cunniffe, Grainne M.
    Dickson, Glenn R.
    Partap, Sonia
    Stanton, Kenneth T.
    O'Brien, Fergal J.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2010, 21 (08) : 2293 - 2298
  • [27] Biomimetic porous silk fibroin/biphasic calcium phosphate scaffold for bone tissue regeneration
    Liu, Bin
    Gao, Xiyuan
    Sun, Zhaozhong
    Fang, Qingmin
    Geng, Xiaopeng
    Zhang, Hanli
    Wang, Guanglin
    Dou, Yongfeng
    Hu, Peng
    Zhu, Kai
    Wang, Dawei
    Xing, Jianqiang
    Liu, Dong
    Zhang, Min
    Li, Rui
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2019, 30 (01)
  • [28] Biomimetic porous silk fibroin/biphasic calcium phosphate scaffold for bone tissue regeneration
    Bin Liu
    Xiyuan Gao
    Zhaozhong Sun
    Qingmin Fang
    Xiaopeng Geng
    Hanli Zhang
    Guanglin Wang
    Yongfeng Dou
    Peng Hu
    Kai Zhu
    Dawei Wang
    Jianqiang Xing
    Dong Liu
    Min Zhang
    Rui Li
    Journal of Materials Science: Materials in Medicine, 2019, 30
  • [29] A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering
    Wang, Qian
    Chu, Yanyan
    He, Jianxin
    Shao, Weili
    Zhou, Yuman
    Qi, Kun
    Wang, Lidan
    Cui, Shizhong
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 80 : 232 - 242
  • [30] Customized hybrid biomimetic hydroxyapatite scaffold for bone tissue regeneration
    Ciocca, L.
    Lesci, I. G.
    Mezini, O.
    Parrilli, A.
    Ragazzini, S.
    Rinnovati, R.
    Romagnoli, N.
    Roveri, N.
    Scotti, R.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2017, 105 (04) : 723 - 734