Nonlinear dynamics in horizontal film boiling

被引:46
作者
Panzarella, CH [1 ]
Davis, SH
Bankoff, SG
机构
[1] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Chem Engn, Evanston, IL 60208 USA
关键词
D O I
10.1017/S0022112099006801
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper uses thin-film asymptotics to show how a thin vapour layer can support a liquid which is heated from below and cooled from above, a process known as horizontal him boiling. This approach leads to a single, strongly-nonlinear evolution equation which incorporates buoyancy, capillary and evaporative effects. The stability of the vapour layer is analysed using a variety of methods for both saturated and subcooled film boiling. In subcooled film boiling, there is a stationary solution, a constant-thickness vapour film, which is determined by a simple heat-conduction balance. This is Rayleigh-Taylor unstable because the heavier liquid is above the vapour, but the instability is completely suppressed for sufficient subcooling. A bifurcation analysis determines a supercritical branch of stable, spatially-periodic solutions when the basic state is no longer stable. Numerical branch tracing extends this into the strongly-nonlinear regime, revealing a hysteresis loop and a secondary bifurcation to a branch of travelling waves which are stable under certain conditions. There are no stationary solutions in saturated film boiling, but the initial development of vapour bubbles is determined by directly solving the time-dependent evolution equation. This yields important information about the transient heat transfer during bubble development.
引用
收藏
页码:163 / 194
页数:32
相关论文
共 24 条
[1]   THE NON-BOILING VAPOR FILM [J].
ABBASSI, A ;
WINTERTON, RHS .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1989, 32 (09) :1649-1655
[2]   BIFURCATION TO ROTATING WAVES IN EQUATIONS WITH O(2)-SYMMETRY [J].
ASTON, PJ ;
SPENCE, A ;
WU, W .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (03) :792-809
[3]  
Berenson P.J., 1961, J. Heat Transf., V83, P351, DOI DOI 10.1115/1.3682280
[4]   NONLINEAR STABILITY OF EVAPORATING CONDENSING LIQUID-FILMS [J].
BURELBACH, JP ;
BANKOFF, SG ;
DAVIS, SH .
JOURNAL OF FLUID MECHANICS, 1988, 195 :463-494
[5]  
CHANG YP, 1959, J HEAT TRANSFER, V81, P112
[6]  
Delhaye J. M., 1974, International Journal of Multiphase Flow, V1, P395, DOI 10.1016/0301-9322(74)90012-3
[7]  
Doedel E.J., 1981, CONGRESSUS NUMERANTI, V30, P25
[8]   TRANSIENT POOL BIOLING IN MICROGRAVITY [J].
ERVIN, JS ;
MERTE, H ;
KELLER, RB ;
KIRK, K .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1992, 35 (03) :659-674
[9]   NONLINEAR ADJUSTMENT OF A THIN ANNULAR FILM OF VISCOUS-FLUID SURROUNDING A THREAD OF ANOTHER WITHIN A CIRCULAR CYLINDRICAL PIPE [J].
HAMMOND, PS .
JOURNAL OF FLUID MECHANICS, 1983, 137 (DEC) :363-384
[10]   CORRELATION EQUATIONS FOR FREE CONVECTION HEAT-TRANSFER IN HORIZONTAL LAYERS OF AIR AND WATER [J].
HOLLANDS, KGT ;
RAITHBY, GD ;
KONICEK, L .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1975, 18 (7-8) :879-884