Solvable kinetic Gaussian model in an external field

被引:14
作者
Zhu, JY
Yang, ZR
机构
[1] CCAST, World Lab, Beijing 100080, Peoples R China
[2] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Inst Theoret Phys, Beijing 100875, Peoples R China
[4] Jiangxi Normal Univ, Dept Phys, Nanchang 330027, Peoples R China
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 01期
关键词
D O I
10.1103/PhysRevE.61.210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, the single-spin transition dynamics is used to investigate the kinetic Gaussian model in a periodic external field. We first derive the fundamental dynamic equations, and then treat an isotropic d-dimensional hypercubic lattice Gaussian spin system with Fourier's transformation method. We obtain exactly the local magnetization and the equal-time pair-correlation function. The critical characteristics of the dynamical relaxation tau(q), the complex susceptibility chi(w,q), and the dynamical response are discussed. The results show that the time evolution of the dynamical quantities and the dynamical responses of the system strongly depend on the frequency and the wave vector of the external field.
引用
收藏
页码:210 / 217
页数:8
相关论文
共 31 条
[1]   DIFFUSION IN THE ONE-DIMENSIONAL ISING-MODEL [J].
ACHIAM, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (05) :1825-1833
[2]   REAL-SPACE RENORMALIZATION GROUP FOR CRITICAL DYNAMICS [J].
ACHIAM, Y ;
KOSTERLITZ, JM .
PHYSICAL REVIEW LETTERS, 1978, 41 (02) :128-131
[3]   CRITICAL-DYNAMICS OF THE KINETIC ISING-MODEL ON THE FRACTAL KOCH CURVES [J].
ACHIAM, Y .
PHYSICAL REVIEW B, 1985, 32 (03) :1796-1804
[4]   CRITICAL-DYNAMICS OF THE KINETIC ISING-MODEL ON FRACTAL GEOMETRIES [J].
ACHIAM, Y .
PHYSICAL REVIEW B, 1985, 31 (07) :4732-4734
[5]  
ACHIAM Y, 1986, J PHYS A, V33, P7762
[6]   THE SPHERICAL MODEL OF A FERROMAGNET [J].
BERLIN, TH ;
KAC, M .
PHYSICAL REVIEW, 1952, 86 (06) :821-835
[7]   TIME-DEPENDENT STATISTICS OF ISING MODEL [J].
GLAUBER, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) :294-&
[8]   Dynamical critical exponent of a nonequilibrium Ising model [J].
Grandi, BCS ;
Figueiredo, W .
PHYSICAL REVIEW E, 1996, 54 (05) :4722-4725
[9]   CALCULATION OF DYNAMIC CRITICAL PROPERTIES USING WILSONS EXPANSION METHODS [J].
HALPERIN, BI ;
MA, SK ;
HOHENBERG, PC .
PHYSICAL REVIEW LETTERS, 1972, 29 (23) :1548-+
[10]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479