Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling

被引:49
作者
Xu, Enjun [1 ]
Brosche, Mikael [1 ,2 ]
机构
[1] Univ Helsinki, Div Plant Biol, Dept Biosci, FI-00014 Helsinki, Finland
[2] Univ Tartu, Inst Technol, EE-50411 Tartu, Estonia
基金
芬兰科学院;
关键词
Cell death; Ethylene; Gene expression; Jasmonic acid; Reactive oxygen species; Salicylic acid; SYSTEMIC ACQUIRED-RESISTANCE; JASMONATE-REGULATED DEFENSE; NUCLEOTIDE GATED CHANNEL2; CELL-DEATH; TRANSCRIPTION FACTOR; DISEASE RESISTANCE; PLANT DEFENSE; STRESS RESPONSES; OXIDATIVE BURST; ESSENTIAL COMPONENT;
D O I
10.1186/1471-2229-14-155
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results: In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O-3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O-3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O-3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O-3. Conclusions: Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.
引用
收藏
页数:17
相关论文
共 116 条
[1]   Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana [J].
Ahlfors, Reetta ;
Brosche, Mikael ;
Kollist, Hannes ;
Kangasjarvi, Jaakko .
PLANT JOURNAL, 2009, 58 (01) :1-12
[2]   Death don't have no mercy and neither does calcium:: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity [J].
Ali, Rashid ;
Ma, Wei ;
Lemtiri-Chlieh, Fouad ;
Tsaltas, Dimitrios ;
Leng, Qiang ;
von Bodman, Susannne ;
Berkowitz, Gerald A. .
PLANT CELL, 2007, 19 (03) :1081-1095
[3]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[4]   Identification of Genes Involved in the Response of Arabidopsis to Simultaneous Biotic and Abiotic Stresses [J].
Atkinson, Nicky J. ;
Lilley, Catherine J. ;
Urwin, Peter E. .
PLANT PHYSIOLOGY, 2013, 162 (04) :2028-2041
[5]   The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance [J].
Azevedo, C ;
Sadanandom, A ;
Kitagawa, K ;
Freialdenhoven, A ;
Shirasu, K ;
Schulze-Lefert, P .
SCIENCE, 2002, 295 (5562) :2073-2076
[6]   Role of plant hormones in plant defence responses [J].
Bari, Rajendra ;
Jones, Jonathan D. G. .
PLANT MOLECULAR BIOLOGY, 2009, 69 (04) :473-488
[7]   Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the nudix hydrolase NUDT7 [J].
Bartsch, M ;
Gobbato, E ;
Bednarek, P ;
Debey, S ;
Schultze, JL ;
Bautor, J ;
Parker, JE .
PLANT CELL, 2006, 18 (04) :1038-1051
[8]   Apoplastic Reactive Oxygen Species Transiently Decrease Auxin Signaling and Cause Stress-Induced Morphogenic Response in Arabidopsis [J].
Blomster, Tiina ;
Salojarvi, Jarkko ;
Sipari, Nina ;
Brosche, Mikael ;
Ahlfors, Reetta ;
Keinanen, Markku ;
Overmyer, Kirk ;
Kangasjarvi, Jaakko .
PLANT PHYSIOLOGY, 2011, 157 (04) :1866-1883
[9]   The role of calcium and activated oxygens as signals for controlling cross-tolerance [J].
Bowler, C ;
Fluhr, R .
TRENDS IN PLANT SCIENCE, 2000, 5 (06) :241-246
[10]   The role of salicylic acid in the induction of cell death in Arabidopsis acd11 [J].
Brodersen, P ;
Malinovsky, FG ;
Hématy, K ;
Newman, MA ;
Mundy, J .
PLANT PHYSIOLOGY, 2005, 138 (02) :1037-1045