Neural network approximation of Bayesian models for the inference of ion and electron temperature profiles at W7-X

被引:16
|
作者
Pavone, A. [1 ]
Svensson, J. [1 ]
Langenberg, A. [1 ]
Hoefel, U. [1 ]
Kwak, S. [1 ]
Pablant, N. [2 ]
Wolf, R. C. [1 ]
机构
[1] Max Planck Inst Plasma Phys, Teilinst Greifswald, D-17491 Greifswald, DE, Germany
[2] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
关键词
stellarator; x-ray imaging; neural network; Bayesian inference; modeling; Minerva framework; real time; PREDICTION;
D O I
10.1088/1361-6587/ab1d26
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, we describe a method for training a neural network (NN) to approximate the full model Bayesian inference of plasma profiles from x-ray imaging diagnostic measurements. The modeling is carried out within the Minerva Bayesian modeling framework where models are defined as a set of assumptions, prior beliefs on parameter values and physics knowledge. The goal is to use NNs for fast ion and electron temperature profile inversion from measured image data. The NN is trained solely on artificial data generated by sampling from the joint distribution of the free parameters and model predictions. The training is carried out in such a way that the mapping learned by the network constitutes an approximation of the full model Bayesian inference. The analysis is carried out on images constituted of 20 x 195 pixels corresponding to binned lines of sight and spectral channels, respectively. Through the full model inference, it is possible to infer electron and ion temperature profiles as well as impurity density profiles. When the network is used for the inference of the temperature profiles, the analysis time can be reduced down to a few tens of microseconds for a single time point, which is a drastic improvement if compared to the approximate to 4 h long Bayesian inference. The procedure developed for the generation of the training set does not rely on diagnostic-specific features, and therefore it is in principle applicable to any other model developed within the Minerva framework. The trained NN has been tested on data collected during the first operational campaign at W7-X, and compared to the full model Bayesian inference results.
引用
收藏
页数:14
相关论文
共 16 条
  • [1] Neural network approximated Bayesian inference of edge electron density profiles at JET
    Pavone, A.
    Svensson, J.
    Kwak, S.
    Brix, M.
    Wolf, R. C.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (04)
  • [2] Bayesian inference of electron density and ion temperature profiles from neutral beam and halo Balmer-α emission at Wendelstein 7-X
    Bannmann, S.
    Ford, O.
    Hoefel, U.
    Poloskei, P. Zs
    Pavone, A.
    Kwak, S.
    Svensson, J.
    Lazerson, S.
    McNeely, P.
    Rust, N.
    Hartmann, D.
    Pasch, E.
    Fuchert, G.
    Langenberg, A.
    Pablant, N.
    Brunner, K. J.
    Wolf, R. C.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2024, 66 (06)
  • [3] Modelling of NBI ion wall loads in the W7-X stellarator
    Aekaeslompolo, S.
    Drevlak, M.
    Turkin, Y.
    Bozhenkov, S.
    Jesche, T.
    Kontula, J.
    Kurki-Suonio, T.
    Wolf, R. C.
    NUCLEAR FUSION, 2018, 58 (08)
  • [4] Measurement of the edge ion temperature in W7-X with island divertor by a retarding field analyzer probe
    Li, Y.
    Henkel, M.
    Liang, Y.
    Knieps, A.
    Drews, P.
    Killer, C.
    Nicolai, D.
    Cosfeld, J.
    Geiger, J.
    Feng, Y.
    Effenberg, F.
    Zhang, D.
    Hacker, P.
    Hoeschen, D.
    Satheeswaran, G.
    Liu, S.
    Grulke, O.
    Jakubowski, M.
    Brezinsek, S.
    Otte, M.
    Neubauer, O.
    Schweer, B.
    Xu, G. S.
    Cai, J.
    Huang, Z.
    NUCLEAR FUSION, 2019, 59 (12)
  • [5] Reconstruction of magnetic configurations in W7-X using artificial neural networks
    Boeckenhoff, Daniel
    Blatzheim, Marko
    Hoelbe, Hauke
    Niemann, Holger
    Pisano, Fabio
    Labahn, Roger
    Pedersen, Thomas Sunn
    NUCLEAR FUSION, 2018, 58 (05)
  • [6] Development of glow discharge and electron cyclotron resonance heating conditioning on W7-X
    Goriaev, A.
    Wauters, T.
    Brakel, R.
    Grote, H.
    Gruca, M.
    Volzke, O.
    Brezinsek, S.
    Dinklage, A.
    Kubkowska, M.
    Neuner, U.
    NUCLEAR MATERIALS AND ENERGY, 2019, 18 : 227 - 232
  • [7] Investigation of the neoclassical ambipolar electric field in ion-root plasmas on W7-X
    Pablant, N.
    Langenberg, A.
    Alonso, A.
    Baldzuhn, J.
    Beidler, C. D.
    Bozhenkov, S.
    Burhenn, R.
    Brunner, K. J.
    Dinklage, A.
    Fuchert, G.
    Ford, O.
    Gates, D. A.
    Geiger, J.
    Hirsch, M.
    Hofel, U.
    Kazakov, Ye. O.
    Knauer, J.
    Krychowiak, M.
    Laqua, H.
    Landreman, M.
    Lazerson, S.
    Maassberg, H.
    Marchuck, O.
    Mollen, A.
    Pasch, E.
    Pavone, A.
    Satake, S.
    Schroeder, T.
    Smith, H. M.
    Svensson, J.
    Traverso, P.
    Turkin, Y.
    Velasco, J. L.
    von Stechow, A.
    Warmer, F.
    Weir, G.
    Wolf, R. C.
    Zhang, D.
    NUCLEAR FUSION, 2020, 60 (03)
  • [8] Heat pulse propagation and anomalous electron heat transport measurements on the optimized stellarator W7-X
    Weir, G. M.
    Xanthopoulos, P.
    Hirsch, M.
    Hoefel, U.
    Stange, T.
    Pablant, N.
    Grulke, O.
    Akaeslompolo, S.
    Alcuson, J.
    Bozhenkov, S.
    Beurskens, M.
    Dinklage, A.
    Fuchert, G.
    Geiger, J.
    Landreman, M.
    Langenberg, A.
    Lazerson, S.
    Marushchenko, N.
    Pasch, E.
    Schilling, J.
    Scott, E. R.
    Turkin, Y.
    Klinger, T.
    NUCLEAR FUSION, 2021, 61 (05)
  • [9] The application of a directional electron probe in the measurement of W7-X scrape-off layer current
    Liao, L.
    Liu, S. C.
    Liang, Y.
    Knieps, A.
    Drews, P.
    Killer, C.
    Nicolai, D.
    Neubauer, O.
    Liu, X. J.
    FUSION ENGINEERING AND DESIGN, 2025, 215
  • [10] Electron transport barrier and high confinement in configurations with internal islands close to the plasma edge of W7-X
    Chaudhary, N.
    Hirsch, M.
    Andreeva, T.
    Geiger, J.
    Wolf, R. C.
    Wurden, G. A.
    NUCLEAR FUSION, 2024, 64 (10)