Root-N consistency of penalized spline estimator for partially linear single-index models under general euclidean space

被引:5
作者
Yu, Y
Ruppert, D
机构
[1] Univ Cincinnati, Coll Business Adm, Dept Quantitat Anal & Operat Management, Cincinnati, OH 45221 USA
[2] Cornell Univ, Sch Operat Res & Ind Engn, Ithaca, NY 14853 USA
关键词
asymptotics; compact; inference; nonparametric; ridge regression;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Single-index models are important in multivariate nonparametric regression. In a previous paper, we proposed a penalized spline approach to a partially linear single-index model where the mean function has the form eta(0)(alpha(0) (T) x) + beta(0) (T) z. This approach is computationally stable and efficient in practice. Furthermore, it yields a root-n consistent estimate of the single-index parameter or and the partially linear parameter beta with a nontrivial smoothing parameter under the assumption of a compact parameter space. In this paper, we relax the compactness assumption and prove the existence and root-n consistency of the constrained penalized least squares estimators. We expect our proof technique to be useful for establishing asymptotic properties of the penalized spline approach to other model fitting.
引用
收藏
页码:449 / 455
页数:7
相关论文
共 8 条
[1]   Generalized partially linear single-index models [J].
Carroll, RJ ;
Fan, JQ ;
Gijbels, I ;
Wand, MP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) :477-489
[2]  
CHONG YS, 1999, THESIS U CALIFORNIA
[3]   ASYMPTOTIC PROPERTIES OF NON-LINEAR LEAST SQUARES ESTIMATORS [J].
JENNRICH, RI .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (02) :633-&
[4]   CONSISTENCY OF NONLINEAR REGRESSIONS [J].
MALINVAUD, E .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (03) :956-+
[5]  
NEWEY WK, 1994, HDB ECONOMETRICS, V4, P2133
[6]   ASYMPTOTIC THEORY OF NON-LINEAR LEAST-SQUARES ESTIMATION [J].
WU, CF .
ANNALS OF STATISTICS, 1981, 9 (03) :501-513
[7]   Penalized spline estimation for partially linear single-index models [J].
Yu, Y ;
Ruppert, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (460) :1042-1054
[8]  
YU Y, 2003, 1385 CORNELL U