共 58 条
Imaging Neurochemistry and Brain Structure Tracks Clinical Decline and Mechanisms of ALS in Patients
被引:17
作者:
Andronesi, Ovidiu C.
[1
]
Nicholson, Katharine
[2
]
Jafari-Khouzani, Kourosh
[1
]
Bogner, Wolfgang
[3
]
Wang, Jing
[1
,4
]
Chan, James
[5
]
Macklin, Eric A.
[5
]
Levine-Weinberg, Mark
[2
]
Breen, Christopher
[2
]
Schwarzschild, Michael A.
[6
]
Cudkowicz, Merit
[2
]
Rosen, Bruce R.
[1
]
Paganoni, Sabrina
[2
,7
]
Ratai, Eva-Maria
[1
]
机构:
[1] Harvard Med Sch, Massachusetts Gen Hosp, AA Martinos Ctr Biomed Imaging, Dept Radiol, Boston, MA 02115 USA
[2] Massachusetts Gen Hosp, Neurol Clin Res Inst NCRI, Boston, MA 02114 USA
[3] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, High Field MR Ctr, Vienna, Austria
[4] Huazhong Univ Sci & Technol, Union Hosp, Dept Radiol, Tongji Med Coll, Wuhan, Peoples R China
[5] Massachusetts Gen Hosp, Biostat Ctr, Boston, MA 02114 USA
[6] MassGen Inst Neurodegenerat Dis, Charlestown, MA USA
[7] Spaulding Rehabil Hosp, Boston, MA USA
基金:
美国国家卫生研究院;
关键词:
magnetic resonance spectroscopic imaging (MRSI);
neurochemistry;
glutathione (GSH);
neurodegeneration;
T1 relaxation in the rotating frame (T1rho);
macromolecular fraction;
diffusion tensor imaging (DTI);
amyotrophic lateral sclerosis (ALS);
AMYOTROPHIC-LATERAL-SCLEROSIS;
DIFFUSION-TENSOR;
CORTICOSPINAL TRACT;
IN-VIVO;
GLUTATHIONE;
DEGENERATION;
MRI;
SPECTROSCOPY;
PROGRESSION;
METABOLISM;
D O I:
10.3389/fneur.2020.590573
中图分类号:
R74 [神经病学与精神病学];
学科分类号:
摘要:
Background: Oxidative stress and protein aggregation are key mechanisms in amyotrophic lateral sclerosis (ALS) disease. Reduced glutathione (GSH) is the most important intracellular antioxidant that protects neurons from reactive oxygen species. We hypothesized that levels of GSH measured by MR spectroscopic imaging (MRSI) in the motor cortex and corticospinal tract are linked to clinical trajectory of ALS patients. Objectives: Investigate the value of GSH imaging to probe clinical decline of ALS patients in combination with other neurochemical and structural parameters. Methods: Twenty-four ALS patients were imaged at 3 T with an advanced MR protocol. Mapping GSH levels in the brain is challenging, and for this purpose, we used an optimized spectral-edited 3D MRSI sequence with real-time motion and field correction to image glutathione and other brain metabolites. In addition, our imaging protocol included (i) an adiabatic T1 rho sequence to image macromolecular fraction of brain parenchyma, (ii) diffusion tensor imaging (DTI) for white matter tractography, and (iii) high-resolution anatomical imaging. Results: We found GSH in motor cortex (r = -0.431, p = 0.04) and corticospinal tract (r = -0.497, p = 0.016) inversely correlated with time between diagnosis and imaging. N-Acetyl-aspartate (NAA) in motor cortex inversely correlated (r = -0.416, p = 0.049), while mean water diffusivity (r = 0.437, p = 0.033) and T1 rho (r = 0.482, p = 0.019) positively correlated with disease progression measured by imputed change in revised ALS Functional Rating Scale. There is more decrease in the motor cortex than in the white matter for GSH compared to NAA, glutamate, and glutamine. Conclusions: Our study suggests that a panel of biochemical and structural imaging biomarkers defines a brain endophenotype, which can be used to time biological events and clinical progression in ALS patients. Such a quantitative brain endophenotype may stratify ALS patients into more homogeneous groups for therapeutic interventions compared to clinical criteria.
引用
收藏
页数:11
相关论文