Equivariant K-theory and higher Chow groups of schemes

被引:4
作者
Krishna, Amalendu [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, 1 Homi Bhabha Rd, Mumbai, Maharashtra, India
关键词
RIEMANN-ROCH; INTERSECTION THEORY; MOTIVIC COHOMOLOGY; VARIETIES; FORMULA;
D O I
10.1112/plms.12018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a smooth quasi-projective scheme X over a field k with an action of a reductive group, we establish a spectral sequence connecting the equivariant and the ordinary higher Chow groups of X. For X smooth and projective, we show that this spectral sequence degenerates, leading to an explicit relation between the equivariant and the ordinary higher Chow groups. We obtain several applications to algebraic K-theory. We show that for a reductive group G acting on a smooth projective scheme X, the forgetful map K-i(G)(X) -> K-i (X) induces an isomophism K-i(G)(X)/IGKiG(X) ->(similar or equal to) K-i(X) with rational coefficients. This generalizes a result of Graham to higher K-theory of such schemes. We prove an equivariant Riemann-Roch theorem, leading to a generalization of a result of Edidin and Graham to higher K-theory. Similar techniques are used to prove the equivariant Quillen-Lichtenbaum conjecture.
引用
收藏
页码:657 / 683
页数:27
相关论文
共 50 条
[41]   Euler characteristics of cominuscule quantum K-theory [J].
Buch, Anders S. ;
Chung, Sjuvon .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 97 :145-148
[42]   Algebraic K-theory of strict ring spectra [J].
Rognes, John .
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, :1259-1283
[43]   K-Theory and G-Theory of DG-stacks [J].
Joshua, Roy .
REGULATORS, 2012, 571 :175-217
[44]   PURITY IN CHROMATICALLY LOCALIZED ALGEBRAIC K-THEORY [J].
Land, Markus ;
Mathew, Akhil ;
Meier, Lennart ;
Tamme, Georg .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 37 (04) :1011-1040
[45]   A restriction isomorphism for zero-cycles with coefficients in Milnor K-theory [J].
Lueders, Morten .
CAMBRIDGE JOURNAL OF MATHEMATICS, 2019, 7 (1-2) :1-31
[46]   Riemann-Roch for homotopy invariant K-theory and Gysin morphisms [J].
Navarro, A. .
ADVANCES IN MATHEMATICS, 2018, 328 :501-554
[47]   Back Stable K-Theory Schubert Calculus [J].
Lam, Thomas ;
Lee, Seung Jin ;
Shimozono, Mark .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (24) :21381-21466
[48]   λ-ring structures on the K-theory of algebraic stacks [J].
Joshua, Roy ;
Pelaez, Pablo .
ANNALS OF K-THEORY, 2024, 9 (03) :519-581
[49]   A presentation of the torus-equivariant quantum K-theory ring of flag manifolds of type A, Part II: quantum double Grothendieck polynomials [J].
Maeno, Toshiaki ;
Naito, Satoshi ;
Sagaki, Daisuke .
FORUM OF MATHEMATICS SIGMA, 2025, 13
[50]   The full orbifold K-theory of abelian symplectic quotients [J].
Goldin, Rebecca ;
Harada, Megumi ;
Holm, Tara S. ;
Kimura, Takashi .
JOURNAL OF K-THEORY, 2011, 8 (02) :339-362