Equivariant K-theory and higher Chow groups of schemes

被引:4
作者
Krishna, Amalendu [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, 1 Homi Bhabha Rd, Mumbai, Maharashtra, India
关键词
RIEMANN-ROCH; INTERSECTION THEORY; MOTIVIC COHOMOLOGY; VARIETIES; FORMULA;
D O I
10.1112/plms.12018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a smooth quasi-projective scheme X over a field k with an action of a reductive group, we establish a spectral sequence connecting the equivariant and the ordinary higher Chow groups of X. For X smooth and projective, we show that this spectral sequence degenerates, leading to an explicit relation between the equivariant and the ordinary higher Chow groups. We obtain several applications to algebraic K-theory. We show that for a reductive group G acting on a smooth projective scheme X, the forgetful map K-i(G)(X) -> K-i (X) induces an isomophism K-i(G)(X)/IGKiG(X) ->(similar or equal to) K-i(X) with rational coefficients. This generalizes a result of Graham to higher K-theory of such schemes. We prove an equivariant Riemann-Roch theorem, leading to a generalization of a result of Edidin and Graham to higher K-theory. Similar techniques are used to prove the equivariant Quillen-Lichtenbaum conjecture.
引用
收藏
页码:657 / 683
页数:27
相关论文
共 50 条
[31]   VIRTUAL PULLBACKS IN K-THEORY [J].
Qu, Feng .
ANNALES DE L INSTITUT FOURIER, 2018, 68 (04) :1609-1641
[32]   Semilocal Milnor K-Theory [J].
Garkusha, Grigory .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (24) :22069-22095
[33]   Algebraic K-theory of Crystallographic Groups The Three-Dimensional Splitting Case Introduction [J].
Farley, Daniel Scott ;
Ortiz, Ivonne Johanna .
ALGEBRAIC K-THEORY OF CRYSTALLOGRAPHIC GROUPS: THE THREE-DIMENSIONAL SPLITTING CASE, 2014, 2113 :1-+
[34]   The forgetful map in rational K-theory [J].
Graham, William .
PACIFIC JOURNAL OF MATHEMATICS, 2008, 236 (01) :44-54
[35]   K-theory of regular compactification bundles [J].
Uma, V .
MATHEMATISCHE NACHRICHTEN, 2022, 295 (05) :1013-1034
[36]   Morava K-theory and Rost Invariant [J].
Lavrenov, Andrei ;
Petrov, Victor .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (08)
[37]   K-theory of flag Bott manifolds [J].
Paul, Bidhan ;
Uma, Vikraman .
FORUM MATHEMATICUM, 2024, 36 (03) :621-639
[38]   Polynomials from Combinatorial K-theory [J].
Monical, Cara ;
Pechenik, Oliver ;
Searles, Dominic .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (01) :29-62
[39]   A conjectural Peterson isomorphism in K-theory [J].
Lam, Thomas ;
Li, Changzheng ;
Mihalcea, Leonardo C. ;
Shimozono, Mark .
JOURNAL OF ALGEBRA, 2018, 513 :326-343
[40]   K-theory of surfaces at the prime 2 [J].
Rosenschon, A ;
Ostvær, PA .
K-THEORY, 2004, 33 (03) :215-250