Equivariant K-theory and higher Chow groups of schemes

被引:4
作者
Krishna, Amalendu [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, 1 Homi Bhabha Rd, Mumbai, Maharashtra, India
关键词
RIEMANN-ROCH; INTERSECTION THEORY; MOTIVIC COHOMOLOGY; VARIETIES; FORMULA;
D O I
10.1112/plms.12018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a smooth quasi-projective scheme X over a field k with an action of a reductive group, we establish a spectral sequence connecting the equivariant and the ordinary higher Chow groups of X. For X smooth and projective, we show that this spectral sequence degenerates, leading to an explicit relation between the equivariant and the ordinary higher Chow groups. We obtain several applications to algebraic K-theory. We show that for a reductive group G acting on a smooth projective scheme X, the forgetful map K-i(G)(X) -> K-i (X) induces an isomophism K-i(G)(X)/IGKiG(X) ->(similar or equal to) K-i(X) with rational coefficients. This generalizes a result of Graham to higher K-theory of such schemes. We prove an equivariant Riemann-Roch theorem, leading to a generalization of a result of Edidin and Graham to higher K-theory. Similar techniques are used to prove the equivariant Quillen-Lichtenbaum conjecture.
引用
收藏
页码:657 / 683
页数:27
相关论文
共 50 条
  • [21] Residues in K-theory
    Lehmann, Daniel
    REAL AND COMPLEX SINGULARITIES, 2012, 569 : 101 - 114
  • [22] Higher arithmetic Chow groups
    Burgos Gil, Jose Ignacio
    Feliu, Elisenda
    COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (03) : 521 - 587
  • [23] ORBIFOLD PRODUCTS FOR HIGHER K-THEORY AND MOTIVIC COHOMOLOGY
    Fu, Lie
    Manh Toan Nguyen
    DOCUMENTA MATHEMATICA, 2019, 24 : 1769 - 1810
  • [24] Higher Algebraic K-Theory (After Quillen, Thomason and Others)
    Schlichting, Marco
    TOPICS IN ALGEBRAIC AND TOPOLOGICAL K-THEORY, 2011, 2008 : 167 - 241
  • [25] Morava K-theory of orthogonal groups and motives of projective quadrics
    Geldhauser, Nikita
    Lavrenov, Andrei
    Petrov, Victor
    Sechin, Pavel
    ADVANCES IN MATHEMATICS, 2024, 446
  • [26] OPERATIONAL K-THEORY
    Anderson, Dave
    Payne, Sam
    DOCUMENTA MATHEMATICA, 2015, 20 : 357 - 399
  • [27] EQUIVARIANT K-THEORY OF SEMI-INFINITE FLAG MANIFOLDS AND THE PIERI-CHEVALLEY FORMULA
    Kato, Syu
    Naito, Satoshi
    Sagaki, Daisuke
    DUKE MATHEMATICAL JOURNAL, 2020, 169 (13) : 2421 - 2500
  • [28] K-Theory and Formality
    Carlson, Jeffrey D.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (14) : 11701 - 11751
  • [29] Pieri rules for the K-theory of cominuscule Grassmannians
    Buch, Anders Skovsted
    Ravikumar, Vijay
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 668 : 109 - 132
  • [30] NOTE ON THE FILTRATIONS OF THE K-THEORY
    Yagita, Nobuaki
    KODAI MATHEMATICAL JOURNAL, 2015, 38 (01) : 172 - 200