Equivariant K-theory and higher Chow groups of schemes

被引:4
作者
Krishna, Amalendu [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, 1 Homi Bhabha Rd, Mumbai, Maharashtra, India
关键词
RIEMANN-ROCH; INTERSECTION THEORY; MOTIVIC COHOMOLOGY; VARIETIES; FORMULA;
D O I
10.1112/plms.12018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a smooth quasi-projective scheme X over a field k with an action of a reductive group, we establish a spectral sequence connecting the equivariant and the ordinary higher Chow groups of X. For X smooth and projective, we show that this spectral sequence degenerates, leading to an explicit relation between the equivariant and the ordinary higher Chow groups. We obtain several applications to algebraic K-theory. We show that for a reductive group G acting on a smooth projective scheme X, the forgetful map K-i(G)(X) -> K-i (X) induces an isomophism K-i(G)(X)/IGKiG(X) ->(similar or equal to) K-i(X) with rational coefficients. This generalizes a result of Graham to higher K-theory of such schemes. We prove an equivariant Riemann-Roch theorem, leading to a generalization of a result of Edidin and Graham to higher K-theory. Similar techniques are used to prove the equivariant Quillen-Lichtenbaum conjecture.
引用
收藏
页码:657 / 683
页数:27
相关论文
共 50 条
[21]   Residues in K-theory [J].
Lehmann, Daniel .
REAL AND COMPLEX SINGULARITIES, 2012, 569 :101-114
[22]   Higher arithmetic Chow groups [J].
Burgos Gil, Jose Ignacio ;
Feliu, Elisenda .
COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (03) :521-587
[23]   ORBIFOLD PRODUCTS FOR HIGHER K-THEORY AND MOTIVIC COHOMOLOGY [J].
Fu, Lie ;
Manh Toan Nguyen .
DOCUMENTA MATHEMATICA, 2019, 24 :1769-1810
[24]   Higher Algebraic K-Theory (After Quillen, Thomason and Others) [J].
Schlichting, Marco .
TOPICS IN ALGEBRAIC AND TOPOLOGICAL K-THEORY, 2011, 2008 :167-241
[25]   Morava K-theory of orthogonal groups and motives of projective quadrics [J].
Geldhauser, Nikita ;
Lavrenov, Andrei ;
Petrov, Victor ;
Sechin, Pavel .
ADVANCES IN MATHEMATICS, 2024, 446
[26]   EQUIVARIANT K-THEORY OF SEMI-INFINITE FLAG MANIFOLDS AND THE PIERI-CHEVALLEY FORMULA [J].
Kato, Syu ;
Naito, Satoshi ;
Sagaki, Daisuke .
DUKE MATHEMATICAL JOURNAL, 2020, 169 (13) :2421-2500
[27]   OPERATIONAL K-THEORY [J].
Anderson, Dave ;
Payne, Sam .
DOCUMENTA MATHEMATICA, 2015, 20 :357-399
[28]   K-Theory and Formality [J].
Carlson, Jeffrey D. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (14) :11701-11751
[29]   Pieri rules for the K-theory of cominuscule Grassmannians [J].
Buch, Anders Skovsted ;
Ravikumar, Vijay .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 668 :109-132
[30]   NOTE ON THE FILTRATIONS OF THE K-THEORY [J].
Yagita, Nobuaki .
KODAI MATHEMATICAL JOURNAL, 2015, 38 (01) :172-200