On the singularities of quadratic forms

被引:1
|
作者
Pnevmatikos, S [1 ]
Pliakis, D [1 ]
机构
[1] Univ Crete, Fdn Res & Technol Hellas, Heraklion 71409, Crete, Greece
关键词
quadratic forms; singularities; variational problem;
D O I
10.1016/S0393-0440(99)00042-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The induced structures on the submanifolds in a pseudo-Riemannian manifold are not, in general, pseudo-Riemannian; also, the kernel's distributions of the induced quadratic forms do not define, in general, regular foliations. In this report, the singularities of the quadratic forms on a manifold are described in a generic context and we study their geometric and algebraic properties. Therefore, using these results, we treat the problem whether there are Lagrangians on the tangent bundle of a manifold that define a Lagrangian vector field everywhere on the tangent bundle, despite the fact that their Legendre transformation is singular, and the projection of its integral curves gives the solutions of the corresponding variational problem on the manifold. (C) 2000 Elsevier Science B.V. All rights reserved. Subj. Class.: Differential geometry 1991 MSG: 58A10; 58C27.
引用
收藏
页码:73 / 95
页数:23
相关论文
共 50 条
  • [41] On quasi-reduced quadratic forms
    E. Dubois
    C. Levesque
    Acta Mathematica Sinica, English Series, 2010, 26 : 1425 - 1448
  • [42] A note on moment inequality for quadratic forms
    Chen, Xiaohui
    STATISTICS & PROBABILITY LETTERS, 2014, 92 : 83 - 88
  • [43] RESULTS ON WITT KERNELS OF QUADRATIC FORMS FOR MULTI-QUADRATIC EXTENSIONS
    Aravire, Roberto
    Laghribi, Ahmed
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (12) : 4191 - 4197
  • [44] Quadratic and symmetric bilinear compositions of quadratic forms over commutative rings
    Loetscher, Roland
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (01) : 258 - 268
  • [45] DIFFERENTIAL FORMS IN POSITIVE CHARACTERISTIC AVOIDING RESOLUTION OF SINGULARITIES
    Huber, Annette
    Kebekus, Stefan
    Kelly, Shane
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2017, 145 (02): : 305 - 343
  • [46] On volumes of hyperbolic Coxeter polytopes and quadratic forms
    Ratcliffe, John G.
    Tschantz, Steven T.
    GEOMETRIAE DEDICATA, 2013, 163 (01) : 285 - 299
  • [47] The n-point correlation of quadratic forms
    Oliver Sargent
    Monatshefte für Mathematik, 2015, 178 : 259 - 297
  • [48] EXPLICIT RATES OF APPROXIMATION IN THE CLT FOR QUADRATIC FORMS
    Goetze, Friedrich
    Zaitsev, Andrei Yu
    ANNALS OF PROBABILITY, 2014, 42 (01): : 354 - 397
  • [49] Quadratic forms and a product-to-sum formula
    Williams, Kenneth S.
    ACTA ARITHMETICA, 2013, 158 (01) : 79 - 97
  • [50] Density of integer solutions to diagonal quadratic forms
    Browning, T. D.
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (01): : 13 - 38