Pell-type equations and class number of the maximal real subfield of a cyclotomic field

被引:10
作者
Hoque, Azizul [1 ]
Chakraborty, Kalyan [1 ]
机构
[1] Harish Chandra Res Inst, HBNI, Chhatnag Rd, Allahabad 211019, Uttar Pradesh, India
关键词
Diophantine equation; Real quadratic fields; Maximal real subfield of cyclotomic field; Class number;
D O I
10.1007/s11139-017-9963-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the solvability of the Diophantine equation in integers for certain integer m and prime p. Then we apply these results to produce family of maximal real subfield of a cyclotomic field whose class number is strictly larger than 1.
引用
收藏
页码:727 / 742
页数:16
相关论文
共 11 条
[1]  
ANKENY NC, 1965, J REINE ANGEW MATH, V217, P217
[2]  
[Anonymous], 2000, Expo. Math
[3]  
Dickson L. E., 1952, History of the Theory of Numbers, V2
[4]   ON THE CLASS-NUMBER OF THE MAXIMAL REAL SUBFIELD OF A CYCLOTOMIC FIELD [J].
Hoque, Azizul ;
Saikia, Helen K. .
Quaestiones Mathematicae, 2016, 39 (07) :889-894
[5]   PELLS EQUATIONS X2-MY2=-1,-4 AND CONTINUED FRACTIONS [J].
KAPLAN, P ;
WILLIAMS, KS .
JOURNAL OF NUMBER THEORY, 1986, 23 (02) :169-182
[6]  
LANG SD, 1977, J REINE ANGEW MATH, V290, P70
[8]  
Sawilla RE, 2008, LECT NOTES COMPUT SC, V5011, P37, DOI 10.1007/978-3-540-79456-1_2
[9]  
Serret J.-A., 1877, OEUVRES DE LAGRANGE, VI-XIV
[10]   ON THE CLASS-NUMBER OF THE MAXIMAL REAL SUBFIELD OF A CYCLOTOMIC FIELD [J].
TAKEUCHI, H .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (01) :55-58