Analysis of a SEIV epidemic model with a nonlinear incidence rate

被引:54
作者
Cai, Li-Ming [1 ,2 ]
Li, Xue-Zhi [1 ]
机构
[1] Xinyang Normal Univ, Dept Math, Xinyang 464000, Peoples R China
[2] Beijing Inst Informat Control, Beijing 100037, Peoples R China
基金
中国国家自然科学基金;
关键词
Epidemic model; Nonlinear incidence rate; Uniformly persistence; Global stability; PREDATOR-PREY MODEL; GLOBAL-STABILITY; STAGE STRUCTURE; SYSTEMS; PERSISTENCE; BIFURCATION; DYNAMICS; BEHAVIOR;
D O I
10.1016/j.apm.2008.01.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a SEIV epidemic model with a nonlinear incidence rate is investigated. The model exhibits two equilibria, namely, the disease-free equilibrium and the endemic equilibrium. it is shown that if the basic reproduction number R(0) < 1, the disease-free equilibrium is globally asymptotically stable and in such a case the endemic equilibrium does not exist. Moreover, we show that if the basic reproduction number R(0) > 1, the disease is uniformly persistent and the unique endemic equilibrium of the system with saturation incidence is globally asymptotically stable under certain conditions. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2919 / 2926
页数:8
相关论文
共 25 条
[1]   Bifurcation analysis of an SIRS epidemic model with generalized incidence [J].
Alexander, ME ;
Moghadas, SM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (05) :1794-1816
[2]   Periodicity in an epidemic model with a generalized non-linear incidence [J].
Alexander, ME ;
Moghadas, SM .
MATHEMATICAL BIOSCIENCES, 2004, 189 (01) :75-96
[3]   UNIFORMLY PERSISTENT SYSTEMS [J].
BUTLER, G ;
FREEDMAN, HI ;
WALTMAN, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (03) :425-430
[4]   Permanence and stability of a predator-prey system with stage structure for predator [J].
Cai, Liming ;
Song, Xinyu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 201 (02) :356-366
[5]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[6]   Virus dynamics: A global analysis [J].
De Leenheer, P ;
Smith, HL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (04) :1313-1327
[7]   UNIFORMLY PERSISTENT SEMIDYNAMICAL SYSTEMS [J].
FONDA, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (01) :111-116
[8]   The mathematics of infectious diseases [J].
Hethcote, HW .
SIAM REVIEW, 2000, 42 (04) :599-653
[9]  
Levin S. A., 1990, Applied mathematical ecology
[10]   A geometric approach to global-stability problems [J].
Li, MY ;
Muldowney, JS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :1070-1083