Steinitz classes of metacyclic extensions

被引:8
|
作者
Soverchia, E [1 ]
机构
[1] IBM Italia, I-00144 Rome, Italy
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2002年 / 66卷
关键词
D O I
10.1112/S0024610701002940
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a metacyclic group of order pq, where p and q are distinct odd prime numbers, let N\k be a Galois extension whose Galois group G(N\k) is isomorphic to G. Let R-N, R-k be the rings of integers of N and k. As R-k-module R-N is completely determined by [N: k] and by its class in the class group of R-k. The paper determines the classes realized by tame Galois extensions N\k with G(N\k) congruent to G and proves that they form a group.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条