OPTIMAL PARAMETERS FOR A DAMPED SINE-GORDON EQUATION

被引:5
作者
Ha, Junhong [1 ]
Gutman, Semion [2 ]
机构
[1] Korea Univ Technol & Educ, Sch Liberal Arts, Cheonan 330708, South Korea
[2] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
关键词
optimal control; necessary condition; bang-bang control law; IDENTIFICATION PROBLEMS; CONSTANT PARAMETERS; SYSTEM;
D O I
10.4134/JKMS.2009.46.5.1105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a parameter identification problem for a damped sine-Gordon equation is studied from the theoretical and numerical perspectives. A spectral method is developed for the solution of the state and the adjoint equations. The Powell's minimization method is used for the numerical parameter identification. The necessary conditions for the optimization problem are shown to yield the bang-bang control law. Numerical results axe discussed and the applicability of the necessary conditions is examined.
引用
收藏
页码:1105 / 1117
页数:13
相关论文
共 11 条
  • [1] [Anonymous], 1997, INFINITE DIMENSIONAL
  • [2] INFLUENCE OF SOLITONS IN THE INITIAL STATE ON CHAOS IN THE DRIVEN DAMPED SINE-GORDON SYSTEM
    BISHOP, AR
    FESSER, K
    LOMDAHL, PS
    TRULLINGER, SE
    [J]. PHYSICA D, 1983, 7 (1-3): : 259 - 279
  • [3] DAUTARY R, 1992, EVOLUTION PROBLEMS, V1
  • [4] Identification of piecewise-constant potentials by fixed-energy phase shifts
    Gutman, S
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2001, 44 (01) : 49 - 65
  • [5] Ha JH, 2004, J KOREAN MATH SOC, V41, P435
  • [6] Ha JH, 2002, J KOREAN MATH SOC, V39, P509
  • [7] Ha J, 2006, J KOREAN MATH SOC, V43, P931
  • [8] Levi M., 1984, BEATING MODES JOSEPH, P56
  • [9] Lions J.L., 1998, FUNKC EKVACIOJ-SER I, V41, P1
  • [10] Mercier B., 1989, LECT NOTES PHYS, V318