Equivalences between cluster categories

被引:28
作者
Zhu, Bin [1 ]
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
tilting objects; cluster categories; cluster-tilted algebras; BGP-reflection functors;
D O I
10.1016/j.jalgebra.2006.03.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Tilting theory in cluster categories of hereditary algebras has been developed in [A. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, preprint, arXiv: math.RT/ 0402075, 2004, Adv. Math., in press; A. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras, preprint, arXiv: math. RT/0402054, 2004; Trans. Amer. Math. Soc., in press]. Some of them are already proved for hereditary abelian categories there. In the present paper, all basic results about tilting theory are generalized to cluster categories of hereditary abelian categories. Furthermore, for any tilting object T in a hereditary abelian category R, we verify that the tilting functor Hom(H)(T, -) induces a triangle equivalence from the cluster category C(H) to the cluster category C(A), where A is the quasi-tilted algebra End(H) T. Under the condition that one of derived categories of hereditary abelian categories H, V is triangle equivalent to the derived category of a hereditary algebra, we prove that the cluster categories C(H) and C(H) are triangle equivalent to each other if and only if H and H' are derived equivalent, by using the precise relation between cluster-tilted algebras (by definition, the endomorphism algebras of tilting objects in cluster categories) and the corresponding quasi-tilted algebras proved previously. As an application, we give a realization of "truncated simple reflections" defined by Fomin-Zelevinsky on the set of almost positive roots of the corresponding type [S. Fomin, A. Zelevinsky, Cluster algebras 11: Finite type classification, Invent. Math. 154 (1) (2003) 63-121; S. Fomin, A. Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. 158 (3) (2003) 977-1018], by taking H to be the representation category of a valued Dynkin quiver and T a BGP-tilting object (or APR-tilting, in other words). (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:832 / 850
页数:19
相关论文
共 50 条
[31]   Stable categories of higher preprojective algebras [J].
Iyama, Osamu ;
Oppermann, Steffen .
ADVANCES IN MATHEMATICS, 2013, 244 :23-68
[32]   Singularity categories of Gorenstein monomial algebras [J].
Lu, Ming ;
Zhu, Bin .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (08)
[33]   On compact exceptional objects in derived module categories [J].
Li, Liping .
JOURNAL OF ALGEBRA, 2016, 463 :234-253
[34]   Rigid and Schurian modules over cluster-tilted algebras of tame type [J].
Marsh, Robert J. ;
Reiten, Idun .
MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (3-4) :643-682
[35]   Rigid and Schurian modules over cluster-tilted algebras of tame type [J].
Bethany R. Marsh ;
Idun Reiten .
Mathematische Zeitschrift, 2016, 284 :643-682
[36]   Linear independence of cluster monomials for skew-symmetric cluster algebras [J].
Irelli, Giovanni Cerulli ;
Keller, Bernhard ;
Labardini-Fragoso, Daniel ;
Plamondon, Pierre-Guy .
COMPOSITIO MATHEMATICA, 2013, 149 (10) :1753-1764
[37]   Endomorphism algebras for a class of negative Calabi-Yau categories [J].
Simoes, Raquel Coelho ;
Parsons, Mark James .
JOURNAL OF ALGEBRA, 2017, 491 :32-57
[38]   Singularity Categories of some 2-CY-tilted Algebras [J].
Lu, Ming .
ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (06) :1257-1295
[39]   Balanced Pairs and Relative Tilting Objects in Recollements of Abelian Categories [J].
Zhang, Peiyu ;
Liu, Menghui ;
Liu, Dajun ;
Wei, Jiaqun .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025, 41 (04) :1196-1212
[40]   Grassmannians and Cluster Structures [J].
Karin Baur .
Bulletin of the Iranian Mathematical Society, 2021, 47 :5-33