Equivalences between cluster categories

被引:28
作者
Zhu, Bin [1 ]
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
tilting objects; cluster categories; cluster-tilted algebras; BGP-reflection functors;
D O I
10.1016/j.jalgebra.2006.03.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Tilting theory in cluster categories of hereditary algebras has been developed in [A. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, preprint, arXiv: math.RT/ 0402075, 2004, Adv. Math., in press; A. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras, preprint, arXiv: math. RT/0402054, 2004; Trans. Amer. Math. Soc., in press]. Some of them are already proved for hereditary abelian categories there. In the present paper, all basic results about tilting theory are generalized to cluster categories of hereditary abelian categories. Furthermore, for any tilting object T in a hereditary abelian category R, we verify that the tilting functor Hom(H)(T, -) induces a triangle equivalence from the cluster category C(H) to the cluster category C(A), where A is the quasi-tilted algebra End(H) T. Under the condition that one of derived categories of hereditary abelian categories H, V is triangle equivalent to the derived category of a hereditary algebra, we prove that the cluster categories C(H) and C(H) are triangle equivalent to each other if and only if H and H' are derived equivalent, by using the precise relation between cluster-tilted algebras (by definition, the endomorphism algebras of tilting objects in cluster categories) and the corresponding quasi-tilted algebras proved previously. As an application, we give a realization of "truncated simple reflections" defined by Fomin-Zelevinsky on the set of almost positive roots of the corresponding type [S. Fomin, A. Zelevinsky, Cluster algebras 11: Finite type classification, Invent. Math. 154 (1) (2003) 63-121; S. Fomin, A. Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. 158 (3) (2003) 977-1018], by taking H to be the representation category of a valued Dynkin quiver and T a BGP-tilting object (or APR-tilting, in other words). (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:832 / 850
页数:19
相关论文
共 50 条
  • [1] Cluster Categories
    Reiten, Idun
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL I: PLENARY LECTURES AND CEREMONIES, 2010, : 558 - 594
  • [2] Cluster categories from Fukaya categories
    Bae, Hanwool
    Jeong, Wonbo
    Kim, Jongmyeong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2025,
  • [3] Cluster categories for topologists
    Bergner, Julia E.
    Robertson, Marcy
    STACKS AND CATEGORIES IN GEOMETRY, TOPOLOGY, AND ALGEBRA, 2015, 643 : 25 - 35
  • [4] Fundamental domains of cluster categories inside module categories
    Angel Cappa, Juan
    Ines Platzeck, Maria
    Reiten, Idun
    JOURNAL OF ALGEBRA, 2012, 358 : 234 - 249
  • [5] AN INTRODUCTION TO HIGHER CLUSTER CATEGORIES
    Buan, A. B.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (02) : 137 - 157
  • [6] From triangulated categories to abelian categories: cluster tilting in a general framework
    Steffen Koenig
    Bin Zhu
    Mathematische Zeitschrift, 2008, 258 : 143 - 160
  • [7] Rigid objects in higher cluster categories
    Wralsen, Anette
    JOURNAL OF ALGEBRA, 2009, 321 (02) : 532 - 547
  • [8] REPETITIVE HIGHER CLUSTER CATEGORIES OF TYPE An
    Lamberti, Lisa
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (02)
  • [9] Repetitive cluster categories of type Dn
    Gubitosi, Viviana
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02): : 712 - 726
  • [10] From triangulated categories to abelian categories: cluster tilting in a general framework
    Koenig, Steffen
    Zhu, Bin
    MATHEMATISCHE ZEITSCHRIFT, 2008, 258 (01) : 143 - 160