The Monge-Kantorovitch mass transfer and its computational fluid mechanics formulation

被引:40
作者
Benamou, JD
Brenier, Y
Guittet, K
机构
[1] INRIA, F-78153 Le Chesnay, France
[2] Univ Paris 06, Anal Numer Lab, F-75752 Paris 05, France
关键词
Monge-Kantorovitch mass tranfer; Wasserstein distance; pressureless potential flow;
D O I
10.1002/fld.264
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper explains how computational fluid mechanics (CFM) concepts can be used to solve the Monge-Kantorovitch mass transfer type of problems (MKP). Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 18 条
[1]   A COMPETITIVE (DUAL) SIMPLEX-METHOD FOR THE ASSIGNMENT PROBLEM [J].
BALINSKI, ML .
MATHEMATICAL PROGRAMMING, 1986, 34 (02) :125-141
[2]   Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampere transport problem [J].
Benamou, JD ;
Brenier, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (05) :1450-1461
[3]   Mixed L2-Wasserstein optimal mapping between prescribed density functions [J].
Benamou, JD ;
Brenier, Y .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 111 (02) :255-271
[4]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[5]  
BENAMOU JD, NUMERICAL RESOLUTION
[6]  
Brenier Y, 1999, COMMUN PUR APPL MATH, V52, P411, DOI 10.1002/(SICI)1097-0312(199904)52:4<411::AID-CPA1>3.0.CO
[7]  
2-3
[9]   A homogenized model for vortex sheets [J].
Brenier, Y .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (04) :319-353
[10]  
Cullen M, 2001, ARCH RATION MECH AN, V156, P241, DOI 10.1007/s002050100124