Preparation of nanocrystalline MnFe2O4 by doping with Ti4+ ions using solid-state reaction route

被引:36
|
作者
Mishra, S.
Kundu, T. K. [1 ]
Barick, K. C.
Bahadur, D.
Chakravorty, D.
机构
[1] Visva Bharati Univ, Dept Phys, Santini Ketan 731235, W Bengal, India
[2] Vidyasagar Univ, Dept Phys & Technophys, Midnapore 721102, W Bengal, India
[3] Indian Inst Technol, Dept Met Engn & Mat Sci, Bombay 400076, Maharashtra, India
[4] Indian Assoc Cultivat Sci, Kolkata 32, W Bengal, India
关键词
nanoparticles; nanoferrites; electrical conductivity;
D O I
10.1016/j.jmmm.2006.04.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanostructured manganese ferrites (MnFe2O4) with diameters in the range of 45-30 nm were synthesized by Ti4+ ion doping, using conventional solid-state reaction route. The substitution of Ti4+ ions created vacancies at Mn 21 sites and the coupling of ferrimagnetically active oxygen polyhedra was broken. This created nanoscale regions of ferrites. A reduction of magnetization for decreasing particle size was observed. Coercivity showed an increasing trend. This was explained as arising due to multidomain/ monodomain magnetic behaviour of magnetic nanoparticles. DC resistivities of the doped specimens indicated the presence of an interfacial amorphous phase formed by the nanoparticles. Zero-field cooled and field-cooled curves from 30 nm sized particles showed a peak at T-B (similar to 125 K), typical of superparamagnetic blocking temperature. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:222 / 226
页数:5
相关论文
共 50 条
  • [41] Magnetic, Electrochemical and Antimicrobial Properties of Li Ions Substituted by MnFe2O4 Nanoparticles
    Padma, B.
    Vasuki, G.
    Balu, T.
    Sweetlin, M. Daniel
    RUSSIAN PHYSICS JOURNAL, 2024, 67 (07) : 1042 - 1050
  • [42] Electrical Properties of Na-β"-Al2O3 Solid Electrolyte with Ti4+ Doping
    Jiang B.
    Li Y.
    Wang Z.
    Li Z.
    Shen Z.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2020, 44 (08): : 870 - 875
  • [43] Preparation and Mechanism of Nano-BaB2O4 by Solid-State Reaction at Room Temperature
    Ding, Shi-Wen
    Cai, Qiao-Fen
    Gao, Gui-Ling
    INTEGRATED FERROELECTRICS, 2011, 127 : 28 - 33
  • [44] Synthesis of NiMn2O4 thin films via a simple solid-state reaction route
    Ren, Wei
    Zhang, Yong-Chao
    Zhu, Nan-Nan
    Feng, Ai-Ling
    Shang, Shi-Guang
    CERAMICS INTERNATIONAL, 2020, 46 (08) : 11675 - 11679
  • [45] Preparation and characterization of MnFe2O4 by a microwave-assisted oxidative roasting process
    Wang, Zhixing
    Chen, Haipeng
    Han, Xiao
    Gao, Lihua
    Zhan, Wenlong
    Zhang, Junhong
    He, Zhijun
    ADVANCED POWDER TECHNOLOGY, 2023, 34 (07)
  • [46] Impedance Spectroscopy of Nanocrystalline MgFe2O4 and MnFe2O4 Ferrite Ceramics: Effect of Grain Boundaries on the Electrical Properties
    Sekulic, Dalibor L.
    Lazarevic, Zorica Z.
    Jovalekic, Cedomir D.
    Milutinovic, Aleksandra N.
    Romcevic, Nebojsa Z.
    SCIENCE OF SINTERING, 2016, 48 (01) : 17 - 28
  • [47] Ultrasensitive magnetic labeling of stemcells using polycationic MnFe2O4 nanocrystals
    Yang, Jaemoon
    Lim, Eun-Kyung
    Lee, Eun-Sook
    Suh, Jin-Suck
    Haam, Seungjoo
    Huh, Yong-Min
    JOURNAL OF BIOTECHNOLOGY, 2008, 136 : S194 - S195
  • [48] Zinc substitution effect on the structural, spectroscopic and electrical properties of nanocrystalline MnFe2O4 spinel ferrite
    Murugesan, C.
    Ugendar, K.
    Okrasa, L.
    Shen, Jun
    Chandrasekaran, G.
    CERAMICS INTERNATIONAL, 2021, 47 (02) : 1672 - 1685
  • [49] Surface effects and spin glass state in CO3O4 coated MnFe2O4 nanoparticles
    Zeb, F.
    Ishaque, M.
    Nadeem, K.
    Kamran, M.
    Krenn, H.
    Szabo, D., V
    MATERIALS RESEARCH EXPRESS, 2018, 5 (08):
  • [50] KINETICS OF FORMATION OF NIAL2O4 BY SOLID-STATE REACTION
    MACAK, J
    KOUTSKY, B
    COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 1973, 38 (09) : 2561 - 2565