Compressible fluids in a capillary tube

被引:7
作者
Athanassenas, Maria
Finn, Robert
机构
[1] Monash Univ, Sch Math Sci, Melbourne, Vic 3800, Australia
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
capillary surfaces; capillary tube; mean curvature; compressible fluid; elliptic nonlinear second-order PDE;
D O I
10.2140/pjm.2006.224.201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a mathematical model for a compressible liquid in a capillary tube. We establish necessary and sufficient conditions for existence and for uniqueness or near uniqueness of solutions, and we provide general height estimates for solutions, depending on the geometrical structure of the definition domain. We show that solutions exhibit discontinuous dependence properties in domains with corners, analogous to those that are known for the classical capillarity equation.
引用
收藏
页码:201 / 229
页数:29
相关论文
共 50 条
[21]   Micrometric ripples in a capillary tube, the effect of microgravity [J].
Alain Merlen ;
Farzam Zoueshtiagh ;
Peter J. Thomas ;
Vincent Thomy .
Microgravity Science and Technology, 2007, 19 :60-61
[22]   An empirical model for predicting the length of a capillary tube [J].
Freegah, Basim ;
Saleh, Qasim ;
Theeb, Maathe A. .
HEAT TRANSFER, 2021, 50 (05) :4830-4842
[23]   Simulation on refrigerant flow in adiabatic capillary tube [J].
Wang, Meixia ;
Liu, Cunfang ;
Zhou, Qiangtai .
FRONTIERS OF MECHANICAL ENGINEERING, 2008, 3 (03) :332-336
[24]   Micrometric Ripples in a Capillary Tube, the Effect of Microgravity [J].
Merlen, A. ;
Zoueshtiagh, F. ;
Thomas, P. J. ;
Thomy, V. .
MICROGRAVITY SCIENCE AND TECHNOLOGY, 2007, 19 (3-4) :60-61
[25]   Approximate analytic solutions of adiabatic capillary tube [J].
Zhang, CL ;
Ding, GL .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2004, 27 (01) :17-24
[26]   Lagrangian structure for two dimensional non-barotropic compressible fluids [J].
Maluendas, Pedro ;
Santos, Marcelo M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 473 (02) :934-951
[27]   Global weak solutions to a class of non-Newtonian compressible fluids [J].
Feireisl, E. ;
Liao, X. ;
Malek, J. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (16) :3482-3494
[28]   COMPUTATIONAL METHOD FOR INTERACTIONS BETWEEN COMPRESSIBLE FLUIDS AND SOLIDS WITH THERMAL CONDUCTIVITY [J].
Toriu, D. ;
Ushijima, S. .
PROCEEDINGS OF THE 1ST PAN-AMERICAN CONGRESS ON COMPUTATIONAL MECHANICS AND XI ARGENTINE CONGRESS ON COMPUTATIONAL MECHANICS, 2015, :647-657
[29]   The onset of convection in the Rayleigh-Bénard problem for compressible fluids [J].
Andreas S. Bormann .
Continuum Mechanics and Thermodynamics, 2001, 13 :9-23