Preserving Privacy in Mobile Health Systems Using Non-Interactive Zero-Knowledge Proof and Blockchain

被引:38
作者
Tomaz, Antonio Emerson Barros [1 ]
Do Nascimento, Jose Claudio [2 ]
Hafid, Abdelhakim Senhaji [3 ]
De Souza, Jose Neuman [1 ]
机构
[1] Univ Fed Ceara, Comp Sci Dept, BR-60440900 Fortaleza, Ceara, Brazil
[2] Univ Fed Ceara, Elect Engn Dept, Campus Sobral, BR-62010560 Sobral, Brazil
[3] Univ Montreal, Network Res Lab, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Authentication; blockchain; resource-limited devices; Internet of Things; mobile health; privacy-preserving; AUTHENTICATION SCHEME; ACCESS-CONTROL; CHALLENGES; SECURITY; FRAMEWORK; FOG; TECHNOLOGIES; ARCHITECTURE; NETWORKS; INTERNET;
D O I
10.1109/ACCESS.2020.3036811
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advent of miniaturized mobile devices with wireless communication capability and integrated with biosensors has revolutionized healthcare systems. The devices can be used by individuals as wearable accessories to collect health data regularly. This type of medical assistance supported by mobile devices to monitor patients and offer health services remotely is known as mobile health (mHealth). Although mHealth provides many benefits and has become popular, it can pose severe privacy risks. Many features in mHealth are managed through a smartphone. Thus, one of the most worrying issues involves communication between the monitoring devices and the smartphone. When communication uses Bluetooth, it is standard for a device to be paired with the smartphone; but generally, it is not exclusively associated with a specific mHealth app. This characteristic can allow a data theft attack by a malicious app or fake data injection by an illegitimate device. To address this issue, we present an authentication scheme based on Non-Interactive Zero-Knowledge Proof that is lightweight enough to run on mHealth devices with minimal resources. Our scheme ensures that legitimate devices interact exclusively with the official mHealth application. To ensure the patient's privacy-preserving throughout the system, we address the issues of storing, managing, and sharing data using blockchain. Since there is no privacy in the standard blockchain, we present a scheme in which the health data transmitted, stored, or shared are protected by Attribute-Based Encryption. The outcome is a system with fine-grained access control, entirely managed by the patient, and an end-to-end privacy guarantee.
引用
收藏
页码:204441 / 204458
页数:18
相关论文
共 65 条
[1]   Health Fog: a novel framework for health and wellness applications [J].
Ahmad, Mahmood ;
Amin, Muhammad Bilal ;
Hussain, Shujaat ;
Kang, Byeong Ho ;
Cheong, Taechoong ;
Lee, Sungyoung .
JOURNAL OF SUPERCOMPUTING, 2016, 72 (10) :3677-3695
[2]   Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications [J].
Al-Janabi, Samaher ;
Al-Shourbaji, Ibrahim ;
Shojafar, Mohammad ;
Shamshirband, Shahaboddin .
EGYPTIAN INFORMATICS JOURNAL, 2017, 18 (02) :113-122
[3]   Applications of Blockchains in the Internet of Things: A Comprehensive Survey [J].
Ali, Muhammad Salek ;
Vecchio, Massimo ;
Pincheira, Miguel ;
Dolui, Koustabh ;
Antonelli, Fabio ;
Rehmani, Mubashir Husain .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2019, 21 (02) :1676-1717
[4]  
[Anonymous], [No title captured]
[5]  
[Anonymous], 2009, 2009389
[6]   MedRec: Using Blockchain for Medical Data Access and Permission Management [J].
Azaria, Asaph ;
Ekblaw, Ariel ;
Vieira, Thiago ;
Lippman, Andrew .
PROCEEDINGS 2016 2ND INTERNATIONAL CONFERENCE ON OPEN AND BIG DATA - OBD 2016, 2016, :25-30
[7]  
Bafandehkar M, 2013, INT CONF IT CONVERGE
[8]   Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities [J].
Baker, Stephanie B. ;
Xiang, Wei ;
Atkinson, Ian .
IEEE ACCESS, 2017, 5 :26521-26544
[9]  
Benet J., 2014, Technical Report Draft, V3
[10]   Ciphertext-policy attribute-based encryption [J].
Bethencourt, John ;
Sahai, Amit ;
Waters, Brent .
2007 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, PROCEEDINGS, 2007, :321-+