A completeness theorem for the expressive power of higher-order algebraic specifications

被引:4
作者
Meinke, K
机构
[1] Institutionen Numerisk Analys Och D., KTH Stockholm
关键词
D O I
10.1006/jcss.1997.1489
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the expressive power of a general form of higher-order algebraic specification which allows constructors and hidden sorts and operations. We prove a completeness theorem which exactly characterises the expressiveness of such specifications with respect to the analytical hierarchy. In particular we show that for any countable signature Sigma and minimal Sigma algebra A, A has complexity Pi(1)(1) if, and only if, A has a recursive second-order equational specification with constructors and hidden sorts and operators under higher-order initial semantics. (C) 1997 Academic Press.
引用
收藏
页码:502 / 519
页数:18
相关论文
共 23 条
[1]  
[Anonymous], 1987, THEORY RECURSIVE FUN
[2]  
[Anonymous], 1978, RECURSION THEORETIC, DOI DOI 10.1007/978-3-662-12898-5
[3]   THE COMPLETENESS OF THE ALGEBRAIC SPECIFICATION METHODS FOR COMPUTABLE DATA-TYPES [J].
BERGSTRA, JA ;
TUCKER, JV .
INFORMATION AND CONTROL, 1982, 54 (03) :186-200
[4]   INITIAL AND FINAL ALGEBRA-SEMANTICS FOR DATA TYPE SPECIFICATIONS - 2 CHARACTERIZATION THEOREMS [J].
BERGSTRA, JA ;
TUCKER, JV .
SIAM JOURNAL ON COMPUTING, 1983, 12 (02) :366-387
[5]   ALGEBRAIC SPECIFICATIONS OF COMPUTABLE AND SEMICOMPUTABLE DATA-TYPES [J].
BERGSTRA, JA ;
TUCKER, JV .
THEORETICAL COMPUTER SCIENCE, 1987, 50 (02) :137-181
[6]  
BERGSTRA JA, 1980, B EATCS, V11, P23
[7]  
EHRIG H, 1985, FUNDAMENTALS ALGEBRA, V1
[8]  
Goguen J. A., 1982, SIGPLAN Notices, V17, P9, DOI 10.1145/947886.947887
[9]  
Goguen J. A., 1975, Proceedings of the conference on computer graphics, pattern recognition, and data structure, P89
[10]  
GOGUEN JA, 1985, ALGEBRAIC METHODS SE, P459