Nitrogen-Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport

被引:29
作者
Ortiz-Medina, Josue [1 ,2 ]
Luisa Garcia-Betancourt, M. [1 ,2 ]
Jia, Xiaoting [3 ]
Martinez-Gordillo, Rafael [4 ]
Pelagio-Flores, Miguel A. [5 ]
Swanson, David [6 ,7 ]
Elias, Ana Laura [2 ]
Gutierrez, Humberto R. [2 ]
Gracia-Espino, Eduardo [1 ]
Meunier, Vincent [8 ,9 ]
Owens, Jonathan [9 ]
Sumpter, Bobby G. [8 ]
Cruz-Silva, Eduardo [8 ]
Rodriguez-Macias, Fernando J. [1 ,5 ]
Lopez-Urias, Florentino [1 ,2 ]
Munoz-Sandoval, Emilio [1 ]
Dresselhaus, Mildred S. [10 ,11 ]
Terrones, Humberto [2 ]
Terrones, Mauricio [2 ,12 ]
机构
[1] IPICYT, Adv Mat Dept, San Luis Potosi 78216, Mexico
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Ctr Invest Nanociencia & Nanotecnol CSIC ICN, E-08193 Bellaterra, Spain
[5] Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil
[6] Augustana Coll, Dept Chem, Sioux Falls, SD 57197 USA
[7] Augustana Coll, Dept Phys, Sioux Falls, SD 57197 USA
[8] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[9] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[10] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[11] MIT, Dept Phys, Cambridge, MA 02139 USA
[12] Shinshu Univ, Res Ctr Exot Nanocarbons, Nagano 3808553, Japan
基金
美国国家科学基金会;
关键词
carbon; nanoribbons; doping; sensors; transport mechanisms; graphite; GRAPHENE NANORIBBONS; CARBON NANORIBBONS; ELECTRON; ZIGZAG; EDGES; STATE;
D O I
10.1002/adfm.201202947
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrogen-doped graphitic nanoribbons (N-x-GNRs), synthesized by chemical vapor deposition (CVD) using pyrazine as a nitrogen precursor, are reported for the first time. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) reveal that the synthesized materials are formed by multilayered corrugated GNRs, which in most cases exhibit the formation of curved graphene edges (loops). This suggests that during growth, nitrogen atoms promote loop formation; undoped GNRs do not form loops at their edges. Transport measurements on individual pure GNRs exhibit a linear I-V (current-voltage) behavior, whereas N-x-GNRs show reduced current responses following a semiconducting-like behavior, which becomes more prominent for high nitrogen concentrations. To better understand the experimental findings, electron density of states (DOS), quantum conductance for nitrogen-doped zigzag and armchair single-layer GNRs are calculated for different N doping concentrations using density functional theory (DFT) and non-equilibrium Green functions. These calculations confirm the crucial role of nitrogen atoms in the transport properties, confirming that the nonlinear I-V curves are due to the presence of nitrogen atoms within the N-x-GNRs lattice that act as scattering sites. These characteristic N-x-GNRs transport properties could be advantageous in the fabrication of electronic devices including sensors in which metal-like undoped GNRs are unsuitable.
引用
收藏
页码:3755 / 3762
页数:8
相关论文
共 52 条
[1]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[2]   Chemically Induced Mobility Gaps in Graphene Nanoribbons: A Route for Upscaling Device Performances [J].
Biel, Blanca ;
Triozon, Francois ;
Blase, X. ;
Roche, Stephan .
NANO LETTERS, 2009, 9 (07) :2725-2729
[3]   Spin Polarized Conductance in Hybrid Graphene Nanoribbons Using 5-7 Defects [J].
Botello-Mendez, Andres R. ;
Cruz-Silva, Eduardo ;
Lopez-Urias, Florentino ;
Sumpter, Bobby G. ;
Meunier, Vincent ;
Terrones, Mauricio ;
Terrones, Humberto .
ACS NANO, 2009, 3 (11) :3606-3612
[4]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[5]   In situ doping of graphene by exfoliation in a nitrogen ambient [J].
Brenner, Kevin ;
Murali, Raghu .
APPLIED PHYSICS LETTERS, 2011, 98 (11)
[6]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[7]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[8]   Thermal stability studies of CVD-grown graphene nanoribbons: Defect annealing and loop formation [J].
Campos-Delgado, J. ;
Kim, Y. A. ;
Hayashi, T. ;
Morelos-Gomez, A. ;
Hofmann, M. ;
Muramatsu, H. ;
Endo, M. ;
Terrones, H. ;
Shull, R. D. ;
Dresselhaus, M. S. ;
Terrones, M. .
CHEMICAL PHYSICS LETTERS, 2009, 469 (1-3) :177-182
[9]   Bulk production of a new form of sp2 carbon:: Crystalline graphene nanoribbons [J].
Campos-Delgado, Jessica ;
Romo-Herrera, Jose Manuel ;
Jia, Xiaoting ;
Cullen, David A. ;
Muramatsu, Hiroyuki ;
Kim, Yoong Ahm ;
Hayashi, Takuya ;
Ren, Zhifeng ;
Smith, David J. ;
Okuno, Yu ;
Ohba, Tomonori ;
Kanoh, Hirofumi ;
Kaneko, Katsumi ;
Endo, Morinobu ;
Terrones, Humberto ;
Dresselhaus, Mildred S. ;
Terrones, Mauriclo .
NANO LETTERS, 2008, 8 (09) :2773-2778
[10]   Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes [J].
Cano-Marquez, Abraham G. ;
Rodriguez-Macias, Fernando J. ;
Campos-Delgado, Jessica ;
Espinosa-Gonzalez, Claudia G. ;
Tristan-Lopez, Ferdinando ;
Ramirez-Gonzalez, Daniel ;
Cullen, David A. ;
Smith, David J. ;
Terrones, Mauricio ;
Vega-Cantu, Yadira I. .
NANO LETTERS, 2009, 9 (04) :1527-1533