Levenberg-Marquardt method based on probabilistic Jacobian models for nonlinear equations

被引:6
作者
Zhao, Ruixue [1 ]
Fan, Jinyan [2 ,3 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, MOE LSC, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Levenberg-Marquardt method; Probabilistic Jacobian models; Derivative-free optimization; Global convergence; DERIVATIVE-FREE OPTIMIZATION; TRUST-REGION METHODS; CONVERGENCE;
D O I
10.1007/s10589-022-00393-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a Levenberg-Marquardt method based on probabilistic models for nonlinear equations for which the Jacobian cannot be computed accurately or the computation is very expensive. We introduce the definition of the first-order accurate probabilistic Jacobian model, and show how to construct such a model with sample points generated by standard Gaussian distribution. Under certain conditions, we prove that the proposed method converges to a first order stationary point with probability one. Numerical results show the efficiency of the method.
引用
收藏
页码:381 / 401
页数:21
相关论文
共 24 条
[1]   CONVERGENCE OF TRUST-REGION METHODS BASED ON PROBABILISTIC MODELS [J].
Bandeira, A. S. ;
Scheinberg, K. ;
Vicente, L. N. .
SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (03) :1238-1264
[2]   Levenberg-Marquardt Methods Based on Probabilistic Gradient Models and Inexact Subproblem Solution, with Application to Data Assimilation [J].
Bergou, E. ;
Gratton, S. ;
Vicente, L. N. .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01) :924-951
[3]   DERIVATIVE-FREE OPTIMIZATION OF EXPENSIVE FUNCTIONS WITH COMPUTATIONAL ERROR USING WEIGHTED REGRESSION [J].
Billups, Stephen C. ;
Larson, Jeffrey ;
Graf, Peter .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (01) :27-53
[4]   Multiperiod consumption and portfolio decisions under the multivariate GARCH model with transaction costs and CVaR-based risk control [J].
Chen, ZP .
OR SPECTRUM, 2005, 27 (04) :603-632
[5]   Geometry of interpolation sets in derivative free optimization [J].
Conn, A. R. ;
Scheinberg, K. ;
Vicente, Luis N. .
MATHEMATICAL PROGRAMMING, 2008, 111 (1-2) :141-172
[6]  
CONN A. R., 1997, Approximation Theory and Optimization: Tributes, P83
[7]  
Conn AR, 2009, MOS-SIAM SER OPTIMIZ, V8, P1
[8]   An Adaptive Multi-step Levenberg-Marquardt Method [J].
Fan, Jinyan ;
Huang, Jianchao ;
Pan, Jianyu .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) :531-548
[9]  
Fan JY, 2012, MATH COMPUT, V81, P447
[10]   On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption [J].
Fan, JY ;
Yuan, YX .
COMPUTING, 2005, 74 (01) :23-39