Mosco convergence of integral functionals and its applications

被引:14
作者
Tolstonogov, A. A. [1 ]
机构
[1] RAS, Siberian Branch, Inst Syst Dynam & Control Theory, Irkutsk, Russia
基金
俄罗斯基础研究基金会;
关键词
Mosco convergence; integral functionals; p-Laplacian; EQUATION; MODEL;
D O I
10.1070/SM2009v200n03ABEH004003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Questions relating to the Mosco convergence of integral functionals defined on the space of square integrable functions taking values in a Hilbert space are investigated. The integrands of these functionals are time-dependent proper, convex, lower semicontinuous functions on the Hilbert space. The results obtained are applied to the analysis of the dependence on the parameter of solutions of evolution equations involving time-dependent sub differential operators. For example a parabolic inclusion is considered, where the right-hand side contains a sum of the p-Laplacian and the subdifferential of the indicator function of a time-dependent closed convex set. The convergence as p -> +infinity of solutions of this inclusion is investigated.
引用
收藏
页码:429 / 454
页数:26
相关论文
共 21 条
  • [1] Akagi G., 2004, Abstract and Applied Analysis, V2004, P907, DOI 10.1155/S1085337504403030
  • [2] Akagi G., 2004, Adv. Math. Sci. Appl, V14, P683
  • [3] [Anonymous], 1981, Bull. Fac. Educ. Chiba Univ., V30, P1
  • [4] Fast/slow diffusion and growing sandpiles
    Aronsson, G
    Evans, LC
    Wu, Y
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 131 (02) : 304 - 335
  • [5] Attouch H., 1984, APPL MATH SERIES
  • [6] Barbu V, 1976, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste Romania
  • [7] Barbu V., 1984, RES NOTES MATH, V100
  • [8] Bean's critical-state model as the p → ∞ limit of an evolutionary p-Laplacian equation
    Barrett, JW
    Prigozhin, L
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (06) : 977 - 993
  • [9] Besov O. V., 1979, Integral representations of functions and imbedding theorems, VII
  • [10] BESOV OV, 1979, SCRIPTA SERIES MATH, V1