Terahertz emission from nonlinear interaction of laser beat wave with nanoparticles

被引:8
作者
Varshney, Prateek [1 ]
Gopal, Krishna [2 ]
Upadhyay, Ajit [3 ]
机构
[1] Indian Inst Technol, Dept Phys, New Delhi 110016, India
[2] Univ Delhi, Rajdhani Coll, Dept Phys & Elect, Delhi 110015, India
[3] Raja Ramanna Ctr Adv Technol, Laser Plasma Div, Indore 452013, India
关键词
nonlinear interaction; beam-decentering parameter and THz radiations; RADIATION GENERATION; PULSES; PLASMA; SUBPICOSECOND;
D O I
10.1088/1612-202X/abbeea
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Terahertz radiation is investigated using nonlinear interaction of a laser beat wave with a density-modulated medium of graphite nanoparticles. A beam-decentering parameter, b, is used to modify the polarizing field's profile to produce different-shaped laser pulse envelopes, e.g. Gaussian, top head, ring-shaped and cosh-Gaussian. The normal vectors corresponding to the basal planes of graphite nanoparticles are considered to be aligned parallel and perpendicular to the polarization of the propagating laser pulse. The electronic cloud of the graphite nanoparticles acquires a nonlinear oscillatory velocity under the influence of a nonlinear force that produces a strong nonlinear current at the beat-wave frequency (omega(T) = omega(1) - omega(2)). The strong nonlinear current allows the emission of radiation in the terahertz frequency regime. The terahertz radiation intensifies and attains a peak value when the laser beat-wave frequency (omega(T)) equals the plasmon frequency (omega(p)) of the nanoparticles. The terahertz radiation's amplitude is enhanced by up to the fourth order of magnitude in the case of a cosh-Gaussian laser pulse, when the beam-decentering parameter, b, equals 5. The present numerical results reveal that by changing the shape of a laser pulse and the properties of nanoparticles, one can control and tune the THz emission.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Structure and electronic properties of graphite nanoparticles [J].
Andersson, OE ;
Prasad, BLV ;
Sato, H ;
Enoki, T ;
Hishiyama, Y ;
Kaburagi, Y ;
Yoshikawa, M ;
Bandow, S .
PHYSICAL REVIEW B, 1998, 58 (24) :16387-16395
[2]   Ultrafast Spatiotemporal Dynamics of Terahertz Generation by Ionizing Two-Color Femtosecond Pulses in Gases [J].
Babushkin, I. ;
Kuehn, W. ;
Koehler, C. ;
Skupin, S. ;
Berge, L. ;
Reimann, K. ;
Woerner, M. ;
Herrmann, J. ;
Elsaesser, T. .
PHYSICAL REVIEW LETTERS, 2010, 105 (05)
[3]   Terahertz generation via optical rectification of x-mode laser in a rippled density magnetized plasma [J].
Bhasin, Lalita ;
Tripathi, V. K. .
PHYSICS OF PLASMAS, 2009, 16 (10)
[4]   Excitation of electromagnetic wake fields in a magnetized plasma [J].
Brodin, G ;
Lundberg, J .
PHYSICAL REVIEW E, 1998, 57 (06) :7041-7047
[5]   High-power terahertz radiation from relativistic electrons [J].
Carr, GL ;
Martin, MC ;
McKinney, WR ;
Jordan, K ;
Neil, GR ;
Williams, GP .
NATURE, 2002, 420 (6912) :153-156
[6]   Strong terahertz emission from electromagnetic diffusion near cutoff in plasma [J].
Cho, M-H ;
Kim, Y-K ;
Suk, H. ;
Ersfeld, B. ;
Jaroszynski, D. A. ;
Hur, M. S. .
NEW JOURNAL OF PHYSICS, 2015, 17
[7]   Characterization of 700 μJ T rays generated during high-power laser solid interaction [J].
Gopal, A. ;
Singh, P. ;
Herzer, S. ;
Reinhard, A. ;
Schmidt, A. ;
Dillner, U. ;
May, T. ;
Meyer, H. -G. ;
Ziegler, W. ;
Paulus, G. G. .
OPTICS LETTERS, 2013, 38 (22) :4705-4707
[8]   Laser-pulse shape effects on magnetic field generation in underdense plasmas [J].
Gopal, K. ;
Raja, Md A. ;
Gupta, D. N. ;
Avinash, K. ;
Sharma, S. C. .
INDIAN JOURNAL OF PHYSICS, 2018, 92 (07) :919-925
[9]   Optimization and control of electron beams from laser wakefield accelerations using asymmetric laser pulses [J].
Gopal, K. ;
Gupta, D. N. .
PHYSICS OF PLASMAS, 2017, 24 (10)
[10]   SUBPICOSECOND, ELECTROMAGNETIC PULSES FROM INTENSE LASER-PLASMA INTERACTION [J].
HAMSTER, H ;
SULLIVAN, A ;
GORDON, S ;
WHITE, W ;
FALCONE, RW .
PHYSICAL REVIEW LETTERS, 1993, 71 (17) :2725-2728