Incongruences for modular forms and applications to partition functions

被引:4
作者
Garthwaite, Sharon Anne [1 ]
Jameson, Marie [2 ]
机构
[1] Bucknell Univ, Dept Math, Lewisburg, PA 17837 USA
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
Modular form; Incongruence; Partition function; Generalized Frobenius partition; Mock theta function; MOCK THETA-FUNCTIONS; CONGRUENCES; RAMANUJAN;
D O I
10.1016/j.aim.2020.107448
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The study of arithmetic properties of coefficients of modular forms f(tau) = Sigma a(n)q(n) has a rich history, including deep results regarding congruences in arithmetic progressions. Recently, work of C.-S. Radu, S. Ahlgren, B. Kim, N. Andersen, and S. Lobrich have employed the q-expansion theory of P. Deligne and M. Rapoport in order to determine more about where these congruences can occur. Here, we apply the method to a large class of modular forms, and in particular to several noteworthy examples, including generalized Frobenius partitions and the two mock theta functions f (q) and omega (q). (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
[32]   Families of Siegel modular forms, L-functions and modularity lifting conjectures [J].
Alexei Panchishkin .
Israel Journal of Mathematics, 2011, 185 :343-368
[33]   p-adic Hodge theory and values of zeta functions of modular forms [J].
Kato, K .
ASTERISQUE, 2004, (295) :117-290
[34]   TOPOLOGICAL MODULAR FORMS [J].
Goerss, Paul G. .
ASTERISQUE, 2010, (332) :221-255
[35]   Generalized modular forms [J].
Knopp, M ;
Mason, G .
JOURNAL OF NUMBER THEORY, 2003, 99 (01) :1-28
[36]   Weierstrass mock modular forms and elliptic curves [J].
Alfes C. ;
Griffin M. ;
Ono K. ;
Rolen L. .
Research in Number Theory, 1 (1)
[37]   CONGRUENCES BETWEEN MODULAR FORMS AND RELATED MODULES [J].
Ciavarella, Miriam .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2009, 41 (01) :55-70
[38]   Algebraic modular forms [J].
Benedict H. Gross .
Israel Journal of Mathematics, 1999, 113 :61-93
[39]   Congruences for Taylor expansions of quantum modular forms [J].
Pavel Guerzhoy ;
Zachary A Kent ;
Larry Rolen .
Research in the Mathematical Sciences, 1
[40]   A modular invariant partition function for the fivebrane [J].
Dolan, L ;
Nappi, CR .
NUCLEAR PHYSICS B, 1998, 530 (03) :683-700