The study of arithmetic properties of coefficients of modular forms f(tau) = Sigma a(n)q(n) has a rich history, including deep results regarding congruences in arithmetic progressions. Recently, work of C.-S. Radu, S. Ahlgren, B. Kim, N. Andersen, and S. Lobrich have employed the q-expansion theory of P. Deligne and M. Rapoport in order to determine more about where these congruences can occur. Here, we apply the method to a large class of modular forms, and in particular to several noteworthy examples, including generalized Frobenius partitions and the two mock theta functions f (q) and omega (q). (c) 2020 Elsevier Inc. All rights reserved.
机构:
Korea Aerosp Univ, Sch Liberal Arts & Sci, 200-1 Hwajeon Dong, Goyang 412791, Gyeonggi, South KoreaKorea Aerosp Univ, Sch Liberal Arts & Sci, 200-1 Hwajeon Dong, Goyang 412791, Gyeonggi, South Korea
Choi, Dohoon
Lim, Subong
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Math Educ, Seoul 110745, South KoreaKorea Aerosp Univ, Sch Liberal Arts & Sci, 200-1 Hwajeon Dong, Goyang 412791, Gyeonggi, South Korea
Lim, Subong
Rhoades, Robert C.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Commun Res, 805 Bunn Dr, Princeton, NJ 08450 USAKorea Aerosp Univ, Sch Liberal Arts & Sci, 200-1 Hwajeon Dong, Goyang 412791, Gyeonggi, South Korea
机构:
Institut Fourier, CNRS UMR 5582, Université Grenoble 1, 100 rue des Maths, BP 74Institut Fourier, CNRS UMR 5582, Université Grenoble 1, 100 rue des Maths, BP 74