Classical Consequences of Continuous Choice Principles from Intuitionistic Analysis

被引:14
作者
Dorais, Francois G. [1 ]
机构
[1] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
关键词
intuitionistic analysis; second-order arithmetic; reverse mathematics; realizability; choice principles;
D O I
10.1215/00294527-2377860
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The sequential form of a statement for all xi(B(xi) ->there exists zeta A(xi, zeta) is the statement for all xi(for all nB(xi(n)) ->there exists zeta for all nA(xi(n), zeta(n))). There are many classically true statements of the form (dagger) whose proofs lack uniformity, and therefore the corresponding sequential form is not provable in weak classical systems. The main culprit for this lack of uniformity is of course the law of excluded middle. Continuing along the lines of Hirst and Mummert, we show that if a statement of the form (dagger) satisfying certain syntactic requirements is provable in some weak intuitionistic system, then the proof is necessarily sufficiently uniform that the corresponding sequential form is provable in a corresponding weak classical system. Our results depend on Kleene's realizability with functions and the Lifschitz variant thereof.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 11 条
[1]   The domains of functions [J].
Brouwer, LEJ .
MATHEMATISCHE ANNALEN, 1927, 97 :60-75
[2]   Reverse mathematics, trichotomy, and dichotomy [J].
Dorais, Francois G. ;
Hirst, Jeffry L. ;
Shafer, Paul .
JOURNAL OF LOGIC AND ANALYSIS, 2012, 4
[3]  
Hirst J. L., 2007, Bull. Pol. Acad. Sci. Math., V55, P303
[4]   Reverse Mathematics and Uniformity in Proofs without Excluded Middle [J].
Hirst, Jeffry L. ;
Mummert, Carl .
NOTRE DAME JOURNAL OF FORMAL LOGIC, 2011, 52 (02) :149-162
[5]  
Kleene S. C., 1965, THE FOUNDATIONS OF I
[6]  
Kohlenbach U., 2008, APPLIED PROOF THEORY
[7]  
Kohlenbach U., 2005, Reverse Mathematics 2001, V21, P281
[8]  
Simpson S. G., 2009, SUBSYSTEMS OF SECOND, DOI [10.1017/CBO9780511581007, DOI 10.1017/CBO09780511581007]
[9]  
Troelstra A. S., 1973, METAMATHEMATICAL INV, V344
[10]  
van Heijenoort J, 1967, FROM FREGE TO GODEL, P446