The redox properties of cytochrome c (Cyt c), hemoglobin (Hb) and myoglobin (Mb) were studied based on electrostatic interactions between Thioglycolic acid (TGA) capped CdSe/ZnS quantum dots (QDs) and proteins. Results indicated that only Cyt c quenched the fluorescence of the QDs at pH > 8.0. Under the optimized conditions, a significant fluorescence recovery of the QDs' system was observed when the reduced form of Cyt c incubated with TGA capped QDs, however, the reduced state of Hb and Mb resulted in a more fluorescence quenching on the same size of QDs. Interestingly, the fluorescence changes of QDs-proteins could be switched by modulating the redox potentials of proteins-attached QDs. Moreover, only the oxidized Cyt c form was reduced by the generated O-2(.-), that significantly enhanced the fluorescence of the QDs' system, which was also demonstrated by fluorescence imaging in HeLa cells. (C) 2014 Elsevier B.V. All rights reserved.