Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers

被引:12
作者
Li, Caiyun [1 ]
He, Jiangyong [1 ]
He, Ruijing [1 ]
Liu, Yange [1 ]
Yue, Yang [1 ]
Liu, Weiwei [1 ]
Zhang, Luhe [1 ]
Zhu, Longfei [1 ]
Zhou, Mengjie [1 ]
Zhu, Kaiyan [1 ]
Wang, Zhi [1 ]
机构
[1] Nankai Univ, Inst Modern Opt, Tianjin Key Lab Optoelect Sensor & Sensing Networ, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
DISSIPATIVE SOLITONS; ULTRASHORT PULSES; RETRIEVAL; FIBERS;
D O I
10.1063/5.0024836
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The dynamics of optical soliton molecules in ultrafast lasers can reveal the intrinsic self-organized characteristics of dissipative systems. The photonic time-stretch dispersive Fourier transformation (TS-DFT) technology provides an effective method to observe the internal motion of soliton molecules real time. However, the evolution of complex soliton molecular structures has not been reconstructed from TS-DFT data satisfactorily. We train a residual convolutional neural network (RCNN) with simulated TS-DFT data and validate it using arbitrarily generated TS-DFT data to retrieve the separation and relative phase of solitons in three- and six-soliton molecules. Then, we use RCNNs to analyze the experimental TS-DFT data of three-soliton molecules in a passive mode-locked laser. The solitons can exhibit different phase evolution processes and have compound vibration frequencies simultaneously. The phase evolutions exhibit behavior consistent with single-shot autocorrelation results. Compared with autocorrelation methods, the RCNN can obtain the actual phase difference and analyze soliton molecules comprising more solitons and almost equally spaced soliton pairs. This study provides an effective method for exploring complex soliton molecule dynamics.
引用
收藏
页数:11
相关论文
共 44 条
[1]  
Abadi M, 2016, ACM SIGPLAN NOTICES, V51, P1, DOI [10.1145/3022670.2976746, 10.1145/2951913.2976746]
[2]  
Akhmediev N., 2008, Lecture notes in physics
[3]   Learning to decompose the modes in few-mode fibers with deep convolutional neural network [J].
An, Yi ;
Huang, Liangjin ;
Li, Jun ;
Leng, Jinyong ;
Yang, Lijia ;
Zhou, Pu .
OPTICS EXPRESS, 2019, 27 (07) :10127-10137
[4]  
[Anonymous], 2015, NVJ, V2, P36
[5]   Generating solitons by phase engineering of a Bose-Einstein condensate [J].
Denschlag, J ;
Simsarian, JE ;
Feder, DL ;
Clark, CW ;
Collins, LA ;
Cubizolles, J ;
Deng, L ;
Hagley, EW ;
Helmerson, K ;
Reinhardt, WP ;
Rolston, SL ;
Schneider, BI ;
Phillips, WD .
SCIENCE, 2000, 287 (5450) :97-101
[6]   The proximity of ideas: An analysis of patent text using machine learning [J].
Feng, Sijie .
PLOS ONE, 2020, 15 (07)
[7]   Common pulse retrieval algorithm: a fast and universal method to retrieve ultrashort pulses [J].
Geib, Nils C. ;
Zilk, Matthias ;
Pertsch, Thomas ;
Eilenberger, Falk .
OPTICA, 2019, 6 (04) :495-505
[8]  
Grelu P, 2012, NAT PHOTONICS, V6, P84, DOI [10.1038/NPHOTON.2011.345, 10.1038/nphoton.2011.345]
[9]   Formation of optical supramolecular structures in a fibre laser by tailoring long-range soliton interactions [J].
He, W. ;
Pang, M. ;
Yeh, D. H. ;
Huang, J. ;
Menyuk, C. R. ;
Russell, P. St J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules [J].
Herink, G. ;
Kurtz, F. ;
Jalali, B. ;
Solli, D. R. ;
Ropers, C. .
SCIENCE, 2017, 356 (6333) :50-53